1
|
Kyriakakis G, Kidonakis M, Louka A, Stratakis M. Pd Nanoparticle-Catalyzed Stereospecific Mizoroki-Heck Arylation of cis-1,2-Disilylarylethylenes. J Org Chem 2024; 89:1980-1988. [PMID: 38215468 DOI: 10.1021/acs.joc.3c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In the presence of catalytic amounts of Pd nanoparticles, generated from Pd2dba3/Ag(I), cis-1,2-ditrimethylsilylarylethylenes undergo with aryl iodides a stereospecific Mizoroki-Heck arylation leading to trans-ditrimethylsilyldiarylethylenes. This chemoselectivity is in contrast to that of their trimethylgermyl analogues, which are arylated at the position of the C-Ge bonds. trans-1,2-Ditrimethylsilylarylethylenes are completely unreactive under the standard reaction conditions. The reaction tolerates the presence of boryl, silyl, or bromine substituents on the aryl iodides. From a mechanistic point of view, the process involves syn-arylpalladation followed by syn-dehydropalladation.
Collapse
Affiliation(s)
- Georgios Kyriakakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Anastasia Louka
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Li J, Hong C, Niu Y, Wang B, Jiang H. Palladium-Catalyzed Cyclization/Alkenylation of Ynone Oximes with Vinylsilanes for the Assembly of Isoxazolyl Vinylsilanes. Chem Asian J 2024:e202301122. [PMID: 38224122 DOI: 10.1002/asia.202301122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
A palladium-catalyzed cascade cyclization/alkenylation for the assembly of synthetically valuable isoxazolyl vinylsilane derivative has been accomplished. Easily accessible ynone oximes, and available vinylsilane agents were used as the reaction starting materials This protocol features broad substrate scope, good functional group tolerance, and good step- and atom-economy. Remarkably, this approach provides a new approach for the construction of structurally diverse isoxazolyl-containing vinylsilanes with high molecular complexity, showing a promising application in synthetic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, P. R. China
| | - Chenjing Hong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Yanan Niu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Bowen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| |
Collapse
|
3
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Khake SM, Yamazaki K, Ano Y, Chatani N. Iridium(III)-Catalyzed Branch-Selective C–H Alkenylation of Aniline Derivatives with Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Zhong R, Xu Y, Sun M, Wang Y. Palladium-Catalyzed Regioselective C-H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. J Org Chem 2021; 86:5255-5264. [PMID: 33750119 DOI: 10.1021/acs.joc.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A regioselective C-H functionalization/annulation reaction of N-sulfonyl amides and allylbenzenes through a palladium-catalyzed C(sp2)-H allylation/aminopalladation/β-H elimination/isomerization sequence has been reported. Various aryl and alkenyl carboxamides are found to be efficient substrates to construct isoquinolinones and pyridinones in up to 96% yield. Using ambient air as the terminal oxidant is another advantage regarding environmental friendliness and operational simplicity.
Collapse
Affiliation(s)
- Rong Zhong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yong Xu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yurong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
6
|
Li Z, Wang X, Cui YM, Ma JH, Fang LL, Han LL, Yang Q, Xu Z, Xu LW. Combined Dynamic Kinetic Resolution and C-H Functionalization for Facile Synthesis of Non-Biaryl-Atropisomer-Type Axially Chiral Organosilanes. Chemistry 2021; 27:4336-4340. [PMID: 33481303 DOI: 10.1002/chem.202100237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Although asymmetric C-H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C-H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C-H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o'-C-H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xu Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Lei Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lu-Lu Han
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Qin Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Hangzhou, 311121, P. R. China
| |
Collapse
|
7
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
8
|
Xie R, Zhu J, Huang Y. Cu-Catalyzed highly selective silylation and borylation of alkenylsulfonium salts. Org Chem Front 2021. [DOI: 10.1039/d1qo00922b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Cu-catalyzed highly selective silylation and borylation of alkenylsulfonium salts under mild conditions is reported providing various alkenylsilanes and alkenylboranes.
Collapse
Affiliation(s)
- Rong Xie
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Yun YL, Yang J, Miao YH, Sun J, Wang XJ. Recent advances in Palladium(II)-catalyzed activation of aromatic ring C–H bonds. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Jayakumar J, Vedarethinam G, Hsiao H, Sun S, Chuang S. Cascade One‐Pot Synthesis of Orange‐Red‐Fluorescent Polycyclic Cinnolino[2,3‐
f
]phenanthridin‐9‐ium Salts by Palladium(II)‐Catalyzed C−H Bond Activation of 2‐Azobiaryl Compounds and Alkenes. Angew Chem Int Ed Engl 2020; 59:689-694. [DOI: 10.1002/anie.201910959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Huan‐Chang Hsiao
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shang‐You Sun
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shih‐Ching Chuang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
11
|
Jayakumar J, Vedarethinam G, Hsiao H, Sun S, Chuang S. Cascade One‐Pot Synthesis of Orange‐Red‐Fluorescent Polycyclic Cinnolino[2,3‐
f
]phenanthridin‐9‐ium Salts by Palladium(II)‐Catalyzed C−H Bond Activation of 2‐Azobiaryl Compounds and Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Huan‐Chang Hsiao
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shang‐You Sun
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shih‐Ching Chuang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|