1
|
Xu N, Chen J, Sun K, Han W. Ligand-Free Iron-Catalyzed Carbonylation of Aryl Iodides with Alkenyl Boronic Acids: Access to α,β-Unsaturated Ketones. Org Lett 2024; 26:9460-9465. [PMID: 39471048 DOI: 10.1021/acs.orglett.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The application of earth-abundant and low-toxicity iron catalysts as replacements for palladium in carbonylative coupling reactions remains challenging and largely unexplored. Reported here is a highly efficient iron-catalyzed carbonylation of aryl iodides with alkenyl boronic acids under ligand-free conditions, enabling the synthesis of α,β-unsaturated ketones even at atmospheric CO pressure. The broad applicability, including its effectiveness with α-branched enones and biologically active molecules, along with high yields and selectivity, underlines the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Ning Xu
- Inner Mongolia Key Laboratory of the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry, and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Phulwale V, Shet H, Gunturu KC, Rout SR, Dandela R, Adhav S, Kapdi AR. Cu(II)/PTABS-Promoted, Chemoselective Amination of HaloPyrimidines. J Org Chem 2024; 89:9243-9254. [PMID: 38878304 DOI: 10.1021/acs.joc.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.
Collapse
Affiliation(s)
- Vikram Phulwale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Suyog Adhav
- BASF Chemicals India Pvt. Ltd., Plot No 12, Thane Belapur Road, Navi Mumbai 400705, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
3
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
4
|
Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes. Commun Chem 2022; 5:13. [PMID: 36697817 PMCID: PMC9814684 DOI: 10.1038/s42004-022-00633-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
α,β-Unsaturated ketones are common feedstocks for the synthesis of fine chemicals, pharmaceuticals, and natural products. Transition metal-catalysed hydroacylation reactions of alkynes using aldehydes have been recognised as an atom-economical route to access α,β-unsaturated ketones through chemoselective aldehydic C-H activation. However, the previously reported hydroacylation reactions using rhodium, cobalt, or ruthenium catalysts require chelating moiety-bearing aldehydes to prevent decarbonylation of acyl-metal-hydride complexes. Herein, we report a nickel-catalysed anti-Markovnikov selective coupling process to afford non-tethered E-enones from terminal alkynes and S-2-pyridyl thioesters in the presence of zinc metal as a reducing agent. Utilization of a readily available thioester as an acylating agent and water as a proton donor enables the mechanistically distinctive and aldehyde-free hydroacylation of terminal alkynes. This non-chelation-controlled approach features mild reaction conditions, high step economy, and excellent regio- and stereoselectivity.
Collapse
|
5
|
Khoshbakht M, Thanaussavadate B, Zhu C, Cao Y, Zakharov LN, Loesgen S, Blakemore PR. Total Synthesis of Chalaniline B: An Antibiotic Aminoxanthone from Vorinostat-Treated Fungus Chalara sp. 6661. J Org Chem 2021; 86:7773-7780. [PMID: 34000192 DOI: 10.1021/acs.joc.1c00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chalaniline B [1-anilino-2,8-dihydroxy-3-(hydroxymethyl)xanthone], an antibiotic previously isolated from vorinostat-treated Chalara sp., was prepared in 7 steps from 2-hydroxyxanthone by a route incorporating regioselective oxidative transformations (bromination at C1/C3, ketone directed Pd(II)-catalyzed hydroxylation at C8), installation of the C1-anilino moiety by a regioselective Buchwald-Hartwig amination reaction from 1,3-dibromo-2,8-dimethoxyxanthone, and late-stage hydroxymethylation at C3 using a Stille cross-coupling. Biological evaluation of deshydroxymethylchalaniline B (1-anilino-2,8-dihydroxyxanthone) revealed MIC values of 8 μg mL-1 (25 μM) against both methicillin resistant S. aureus and B. subtilis.
Collapse
Affiliation(s)
- Mahsa Khoshbakht
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | | - Chenxi Zhu
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080-8610, United States
| | - Yang Cao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080-8610, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
6
|
Shaughnessy KH. Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211114540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphines are widely used ligands in transition metal-catalyzed reactions.
Arylphosphines, such as triphenylphosphine, were among the first phosphines to show
broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich
trialkylphosphines began to receive attention as supporting ligands. These ligands
were found to be particularly effective at promoting oxidative addition in cross-coupling
of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine,
coupling of aryl bromides could be achieved at room temperature. More
importantly, the less reactive, but more broadly available, aryl chlorides became accessible
substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application
in a wide range of late transition-metal catalyzed coupling reactions. This success
has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review
will discuss the general properties and features of monodentate trialkylphosphines and their application in
cross-coupling reactions of C–X and C–H bonds.
Collapse
Affiliation(s)
- Kevin H. Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL, 35487-0336, United States
| |
Collapse
|
7
|
Zhang S, Neumann H, Beller M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem Soc Rev 2020; 49:3187-3210. [DOI: 10.1039/c9cs00615j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonylation reactions represent one of the most important tool box for the synthesis of α,β-unsaturated carbonyl compounds which are key building blocks in organic chemistry. This paper summarizes the most important advances in this field.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | |
Collapse
|