1
|
Zhu F, Chai Q, Xiong D, Zhu N, Zhou J, Wu R, Zhang Z. Morphology Control of Zr-Based Luminescent Metal-Organic Frameworks for Aflatoxin B1 Detection. BIOSENSORS 2024; 14:273. [PMID: 38920577 PMCID: PMC11201970 DOI: 10.3390/bios14060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Metal-organic frameworks (MOFs) have gained significant prominence as sensing materials owing to their unique properties. However, understanding the correlation between the morphology, properties, and sensing performance in these MOF-based sensors remains a challenge, limiting their applications and potential for improvement. In this study, Zr-MOF was chosen as an ideal model to explore the impact of the MOF morphology on the sensing performance, given its remarkable stability and structural variability. Three luminescent MOFs (namely rod-like Zr-LMOF, prismoid-like Zr-LMOF, and ellipsoid-like Zr-LMOF) were synthesized by adjusting the quantities of the benzoic acid and the reaction time. More importantly, the sensing performance of these Zr-LMOFs in response to aflatoxin B1 (AFB1) was thoroughly examined. Notably, the ellipsoid-like Zr-LMOF exhibited significantly higher sensitivity compared to other Zr-LMOFs, attributed to its large specific surface area and pore volume. Additionally, an in-depth investigation into the detection mechanism of AFB1 by Zr-LMOFs was conducted. Building upon these insights, a ratiometric fluorescence sensor was developed by coordinating Eu3+ with ellipsoid-like Zr-LMOF, achieving a remarkably lower detection limit of 2.82 nM for AFB1. This study contributes to an improved comprehension of the relationship between the MOF morphology and the sensing characteristics while presenting an effective approach for AFB1 detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Zhang
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; (F.Z.); (Q.C.); (D.X.); (N.Z.); (J.Z.); (R.W.)
| |
Collapse
|
2
|
A Cu(II)-organic framework with hxl topology as an efficient adsorbent for methylene blue. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abstract
Humic acid (HA) in makeup water is one of the important safety issues of high−parameter power plants. Herein, the Zr−based metal organic frameworks (Zr−MOFs) were applied to remove humic acid in water. The mesoporous and active sites of Zr−MOFs were controlled by different ratios of ligands to increase the adsorption of HA. The maximum adsorption capacity was 150.15 mg g−1. The morphology and adsorption properties of the Zr−MOFs were characterized using scanning electron microscopy (SEM), X−ray diffraction (XRD), surface charge, Fourier Transform infrared (FT−IR), N2 adsorption−desorption and adsorption test. The adsorption process of HA accorded with the pseudo−second−order kinetics, while the adsorption isotherm conformed to the Langmuir model and the adsorption was proved to be a spontaneous and endothermic process. Physical adsorption by the mesoporous materials and the hydrogen bonding interactions between the Zr−MOFs and HA were the driving forces of HA adsorption. These results provided useful information for the effective removal of HA and enhanced our understanding of the adsorption mechanism of HA on Zr−MOFs.
Collapse
|
4
|
Dong Y, Chen R, Zhu X, Niu C, Wu B, Yu A. Homochiral porous coordination polymer of EuIII for metal ion sensing and enantioselective adsorption. CrystEngComm 2022. [DOI: 10.1039/d1ce01244d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multifunctional homochiral porous metal–organic framework was obtained by combining the luminescent component Eu(iii) with an enantiopure triangular polycarboxylic ligand.
Collapse
Affiliation(s)
- Yingling Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Rui Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xu Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Caoyuan Niu
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
5
|
Tay HM, Goddard EJ, Hua C. Three-dimensional Cd( ii) porphyrin metal–organic frameworks for the colorimetric sensing of Electron donors. CrystEngComm 2022. [DOI: 10.1039/d2ce00103a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three MOFs with metalloporphyrin lined, large square 1D channels were used as colorimetric sensors for electron donors. Exposure to amine vapours caused a redshift of the Soret absorption bands of the metalloporphyrin.
Collapse
Affiliation(s)
- Hui Min Tay
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Chemistry, The University of Oxford, OX1 3TA, UK
| | - Emily J. Goddard
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Chemistry, The University of Sheffield, S10 2TN, UK
| | - Carol Hua
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
6
|
Liu Y, Wang X, Wang Q, Zhang Y, Liu Q, Liu S, Li S, Du Y, Wei H. Structurally Engineered Light-Responsive Nanozymes for Enhanced Substrate Specificity. Anal Chem 2021; 93:15150-15158. [PMID: 34738799 DOI: 10.1021/acs.analchem.1c03610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mimicking enzyme specificity via construction of on-demand geometric structures on nanozymes is of great interest in recent years. Although building substrate-specific polymers on nanozymes has achieved great success, polymer-blocked active sites would inevitably lead to decreased activity of nanozymes. Here, we have developed three photoactive metal-organic framework (MOF)-based nanozymes (called 2D-TCPP, 3D-TCPP, and AD-TCPP), which have different geometric structures as well as unshielded active sites. Together with their structural variations and excellent photoresponsive oxidase-like activities, these photoactive nanozymes exhibit structure-dependent specificity for three kinds of substrates (typical oxidase substrates, organic pollutants, and antioxidants). Moreover, AD-TCPP and 3D-TCPP show potential applications for environmental protection and bioanalysis, respectively. This work offers a promising approach to the development of nanozymes with enzyme-like specificity.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Zhou J, Li Y, Wang L, Xie Z. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. J Mater Chem B 2021; 9:7760-7770. [PMID: 34586151 DOI: 10.1039/d1tb01311d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive MOF-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biological properties of these MOFs remains unclear. Herein, porphyrinic MOF isomers (TCPP-MOFs), constructing using the same building blocks into distinct topologies, have been selected as ideal models to understand this problem. Both the intramolecular distances and molecular polarization within TCPP-MOFs isomers collectively contribute to the photoactivity of generating reactive oxygen species. Remarkably, the morphology-determined endocytic pathways and cytotoxicity, as well as good biocompatibility have been confirmed for TCPP-MOF isomers without any chemical modification for the first time. Besides the topology-dependent photoactive regulation, this work also provides in-depth insights into the biological effect from the MOF nanoparticles with controllable structural factors, benefiting further in vivo applications and clinical transformation.
Collapse
Affiliation(s)
- Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Soury R, Jabli M, Alenezi KM, Chaabene M, Haque A, Moll HE, Rein R, Azzam EM, Solladié N. A novel meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato ([Zn(TMP)(4,4′-bpy)]) complex: Synthesis, characterization, and application. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
You ZX, Wang C, Xiao Y, Guan QL, Li JX, Xing YH, Gao HW, Sun LX, Bai FY. Integrated Photoresponsive Alkaline Earth Metal Coordination Networks: Synthesis, Topology, Photochromism and Photoluminescence Investigation. Chemistry 2021; 27:9605-9619. [PMID: 33871899 DOI: 10.1002/chem.202100588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 01/24/2023]
Abstract
Photoresponsive materials are a key part of the age of smart technology that have potential in a broad range of applications. Coordination networks (CNs) are widely used due to their designability and stability. In this work, three novel alkaline earth metal coordination networks (AEM-CNs): [Mg(CMNDI)(H2 O)2 ], [Ca(CMNDI)(H2 O)2 ]⋅H2 O, and [Sr(CMNDI)(H2 O)(DMF)] with fsl, cds, and scn topology nets were synthetized via N,N'-bis(carboxymethyl)-1,4,5,8-naphthalenediimide (H2 CMNDI); the scn net is not found in the Reticular Chemistry Structure Resource or ToposPro. The reusable and sensitive photochromic properties of the three CNs enable them to be used as secret inks or ultraviolet detectors. In addition, the CNs also exhibited reusable photoluminescent turn-off toward the drug molecules, balsalazide disodium (Bal.) and colchicine (Col.), with good limits of detection of 0.16 and 0.70 μM. To the best of our knowledge, this is the first study of a fluorescence sensor for Bal. Thus, the AEM-CNs provide a design idea for integrated photoresponsive materials that could be further improved in the near future by further study.
Collapse
Affiliation(s)
- Zi-Xin You
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Qing-Lin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Jin-Xiao Li
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| | - Hong-Wei Gao
- School of Life Science, Ludong University, Hongqi Mid-road 186#, Yantai, 264025, P.R. China
| | - Li-Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Jinji Road 1#, Guilin, 541004, P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian City, 116029, P.R. China
| |
Collapse
|
11
|
Chu Q, Zhang B, Yang Z, Zhou H, Mu H, Zhang W, Liu B, Wang YY. Stable Indium Pyridylcarboxylate Framework with Highly Selective Adsorption of Cationic Dyes and Effective Nitenpyram Detection. Inorg Chem 2021; 60:5232-5239. [PMID: 33677961 DOI: 10.1021/acs.inorgchem.1c00232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On the basis of an undeveloped asymmetrical pyridylcarboxylate ligand, 2-(2-carboxypyridin-4-yl)terephthalic acid (H3CPTA), an indium pyridylcarboxylate framework, [(Me)2NH2]1.5[In1.5(CPTA)2]·5.5NMF·6H2O (1), is synthesized under solvent thermal conditions. 1 displays a 3D anionic framework with a large void space, which contains open square channels with a cross section of 14.6 Å and a pore surface decorated with carboxylic oxygen atoms. Depending on the anionic skeleton and high water stability, 1 exhibits high adsorption selectivity and capacity for cationic dyes in aqueous solution. Furthermore, the luminescence performance illustrates that 1 has selectivity and sensitivity to nitenpyram with good recyclability.
Collapse
Affiliation(s)
- Qianqian Chu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhipeng Yang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Huifang Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Haibo Mu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bo Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
12
|
Yang XL, Yan YT, Wang WJ, Hao ZZ, Zhang WY, Huang W, Wang YY. A 2-Fold Interpenetrated Nitrogen-Rich Metal-Organic Framework: Dye Adsorption and CO 2 Capture and Conversion. Inorg Chem 2021; 60:3156-3164. [PMID: 33591741 DOI: 10.1021/acs.inorgchem.0c03506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A bifunctional ligand strategy for modification of the functional pores is of great significance in the structural design of metal-organic frameworks (MOFs). Herein, a new 2-fold interpenetrated "pillared-layer" 3D Co-MOF, {[Co(HL)(4,4'-bipy)]·DMF·2H2O}n (1), was successfully synthesized by using two kinds of ligands, imidazolecarboxylic acid and pyridine. The metal-carboxylic layers are pillared by the 4,4'-bipy ligand, displaying a 3D framework with rectangular 3D channels (high BET surface of 190.9 m2 g-1 and maximum aperture of 3.9 Å) that are decorated with abundant uncoordinated N and O atoms. 1 shows good water stability and thermal stability (320 °C). The proper pores and active sites endowed 1 with a selective adsorption of Congo red in aqueous solution. In addition, a high CO2 adsorption capacity and an excellent CO2 chemical conversion were observed.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yang-Tian Yan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wen-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ze-Ze Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenhuan Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
13
|
Liu Y, Di Y, Qiao C, Liu M, Zhou C. A novel microporous metal–organic framework with Lewis basic sites and open O donor sites: Crystal structure and adsorption properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Saleh HA, Mantasha I, Qasem KM, Shahid M, Akhtar MN, AlDamen MA, Ahmad M. A two dimensional Co(II) metal–organic framework with bey topology for excellent dye adsorption and separation: Exploring kinetics and mechanism of adsorption. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Mahmoudi F, Amini MM, Sillanpää M. Hydrothermal synthesis of novel MIL-100(Fe)@SBA-15 composite material with high adsorption efficiency towards dye pollutants for wastewater remediation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Han XL, Nie XD, Chen ZD, Si CM, Wei BG, Lin GQ. Synthesis of a 3,4-Dihydro-1,3-oxazin-2-ones Skeleton via an Intermolecular [4 + 2] Process of N-Acyliminium Ions with Ynamides/Terminal Alkynes. J Org Chem 2020; 85:13567-13578. [DOI: 10.1021/acs.joc.0c01692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiao-Li Han
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiao-Di Nie
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhao-Dan Chen
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
17
|
Younis SA, Lim DK, Kim KH, Deep A. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Adv Colloid Interface Sci 2020; 277:102108. [PMID: 32028075 DOI: 10.1016/j.cis.2020.102108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the coordination of the porphyrin ligand and its derivatives however remains a challenge for engineering new tunable Porph-MOF frameworks by self-assembly methods. The key challenges exist in the following respects: (i) collapse of the large open pores of Porph-MOFs during synthesis, (ii) deactivation of unsaturated metal-sites (UMCs) by axial coordination, and (iii) the tendency of both coordinated moieties (at peripheral meso- and beta-carbon sites) and the N4-pyridine core to coordinate with metal cations. In this respect, this review covers the advances in the design of Porph-MOFs relative to their counterpart covalent organic frameworks (Porph-COFs). The potential utility of custom-designed porphyrin/metalloporphyrins ligands is highlighted. Synthesis strategies of Porph-MOFs are also illustrated with modular design of hybrid guest@host composites (either Porph@MOFs or guest@Porph-MOFs) with exceptional topologies and stability. This review summarizes the synergistic benefits of coordinated porphyrin ligands and functional guest molecules in Porph-MOF composites for enhanced catalytic performance in various redox applications. This review shed lights on the engineering of new tunable hetero-metals open active sites within (metallo)porphyrin-MOFs as out-of-the-box platforms for enhanced catalytic processes in chemical and biological media.
Collapse
Affiliation(s)
- Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt; Liquid Chromatography and Water Unit, EPRI-Central Laboratories, Nasr City, 11727 Cairo, Egypt
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University,145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
18
|
Zhao FH, Li ZL, He YC, Zhang M, Han J, Fan SQ, Li YS, You JM. Syntheses, structures and magnetism of two Cu(II) coordination polymers of d-camphorate controlled by metal-ligand ratio. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
|
20
|
Wei H, Wang CL, Gao W, Liu JP, Zhang XM. Novel 3D anionic heterometallic frameworks based on trinuclear CoII and trinuclear LnIII motifs displaying slow magnetic relaxation and selective adsorption of methylene blue. CrystEngComm 2020. [DOI: 10.1039/d0ce01254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3D CoLn heterometallic frameworks have been synthesized. CoDy and CoHo show slow magnetic relaxation behavior. CoTb exhibits excellent adsorption capacity for methylene blue.
Collapse
Affiliation(s)
- Han Wei
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Wei Gao
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications
- Ministry of Education
- Huaibei Normal University
- China
| |
Collapse
|
21
|
Wang XX, Yang J, Xu X, Ma JF. Highly Stable Copper(I)-Thiacalix[4]arene-Based Frameworks for Highly Efficient Catalysis of Click Reactions in Water. Chemistry 2019; 25:16660-16667. [PMID: 31793069 DOI: 10.1002/chem.201903966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Indexed: 01/24/2023]
Abstract
Environmentally friendly metal-organic frameworks (MOFs) have gained considerable attention for their potential use as heterogeneous catalysts. Herein, two CuI -based MOFs, namely, [Cu4 Cl4 L]⋅CH3 OH⋅1.5 H2 O (1-Cl) and [Cu4 Br4 L]⋅DMF⋅0.5 H2 O (1-Br), were assembled with new functionalized thiacalix[4]arenes (L) and halogen anions X- (X=Cl and Br) under solvothermal conditions. Remarkably, catalysts 1-Cl and 1-Br exhibit great stability in aqueous solutions over a wide pH range. Significantly, MOFs 1-Cl and 1-Br, as recycled heterogeneous catalysts, are capable of highly efficient catalysis for click reactions in water. The MOF structures, especially the exposed active CuI sites and 1D channels, play a key role in the improved catalytic activities. In particular, their catalytic activities in water are greatly superior to those in organic solvents or even in mixed solvents. This work proposes an attractive route for the design and self-assembly of environmentally friendly MOFs with high catalytic activity and reusability in water.
Collapse
Affiliation(s)
- Xue-Xia Wang
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Jin Yang
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
22
|
Lin J, Wang H, Ren E, Song Q, Lan J, Chen S, Yan B. Stomatocyte-like hollow polydopamine nanoparticles for rapid removal of water-soluble dyes from water. Chem Commun (Camb) 2019; 55:8162-8165. [DOI: 10.1039/c9cc04532e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stomatocyte-like hollow polydopamine nanoparticles can rapidly sequester MB from water in 20 s with a high adsorption capacity of 2896 mg g−1.
Collapse
Affiliation(s)
- Jiayou Lin
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Haibo Wang
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Erhui Ren
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Qingshuang Song
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Jianwu Lan
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Sheng Chen
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Bin Yan
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| |
Collapse
|