1
|
Wu Z, Tian Y, Chen H, Wang L, Qian S, Wu T, Zhang S, Lu J. Evolving aprotic Li-air batteries. Chem Soc Rev 2022; 51:8045-8101. [PMID: 36047454 DOI: 10.1039/d2cs00003b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Yuhui Tian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Hao Chen
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shangshu Qian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Dou Y, Xie Z, Wei Y, Peng Z, Zhou Z. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac040. [PMID: 35548381 PMCID: PMC9084180 DOI: 10.1093/nsr/nwac040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaojun Xie
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | | | | | |
Collapse
|
3
|
Hou B, Lei X, Zhong S, Sun B, Ouyang C. Dissociation of (Li 2O 2) 0,+ on graphene and boron-doped graphene: insights from first-principles calculations. Phys Chem Chem Phys 2020; 22:14216-14224. [PMID: 32555834 DOI: 10.1039/d0cp02597f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reducing charge overpotential is of great significance to enhance the efficiency and cyclability of Li-O2 batteries. Here, a dramatically reduced charge overpotential via boron-doped graphene as a catalytic substrate is successfully predicted. By first-principles calculations, from the perspective of reaction thermodynamics and kinetics, the results show that the electrochemical oxidation of the Li2O2+ cation is easier than the chemical oxidation of the neutral Li2O2 molecule, and the oxidation of (Li2O2)0,+ is facilitated by boron-doping in pristine graphene. More importantly, the results reveal the oxidation mechanism of (Li2O2)0,+: two-step dissociation with the LiO2 molecule as a reactive intermediate has advantages over one-step dissociation; the rate-determining step for the dissociation of (Li2O2+)G is the oxygen evolution process, while the lithium removal process is the rate-determining step for the dissociation of (Li2O20)G, (Li2O20)BG, and (Li2O2+)BG.
Collapse
Affiliation(s)
- Binpeng Hou
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China.
| | | | | | | | | |
Collapse
|
4
|
Kwak WJ, Rosy, Sharon D, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem Rev 2020; 120:6626-6683. [PMID: 32134255 DOI: 10.1021/acs.chemrev.9b00609] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells.
Collapse
Affiliation(s)
- Won-Jin Kwak
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.,Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - Rosy
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Daniel Sharon
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chun Xia
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hun Kim
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Lee R Johnson
- School of Chemistry and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K
| | - Peter G Bruce
- Departments of Materials and Chemistry, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Linda F Nazar
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Aryeh A Frimer
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Malachi Noked
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Stefan A Freunberger
- Institute for Chemistry and Technology of Materials, Graz University of Technology, 8010 Graz, Austria.,Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|