1
|
Fan Q, Sun B, Chao J. Advancements in Engineering Tetrahedral Framework Nucleic Acids for Biomedical Innovations. SMALL METHODS 2024:e2401360. [PMID: 39487613 DOI: 10.1002/smtd.202401360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Tetrahedral framework nucleic acids (tFNAs) are renowned for their controllable self-assembly, exceptional programmability, and excellent biocompatibility, which have led to their widespread application in the biomedical field. Beyond these features, tFNAs demonstrate unique chemical and biological properties including high cellular uptake efficiency, structural bio-stability, and tissue permeability, which are derived from their distinctive 3D structure. To date, an extensive range of tFNA-based nanostructures are intelligently designed and developed for various biomedical applications such as drug delivery, gene therapy, biosensing, and tissue engineering, among other emerging fields. In addition to their role in drug delivery systems, tFNAs also possess intrinsic properties that render them highly effective as therapeutic agents in the treatment of complex diseases, including arthritis, neurodegenerative disorders, and cardiovascular diseases. This dual functionality significantly enhances the utility of tFNAs in biomedical research, presenting valuable opportunities for the development of next-generation medical technologies across diverse therapeutic and diagnostic platforms. Consequently, this review comprehensively introduces the latest advancements of tFNAs in the biomedical field, with a focus on their benefits and applications as drug delivery nanoplatforms, and their inherent capabilities as therapeutic agents. Furthermore, the current limitations, challenges, and future perspectives of tFNAs are explored.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Bicheng Sun
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China
| |
Collapse
|
2
|
Xuan J, Wang Z, Huang Y, Liu Y, Han Y, Li M, Xiao M. DNA response element-based smart drug delivery systems for precise drug release. Biomater Sci 2024; 12:3550-3564. [PMID: 38832670 DOI: 10.1039/d4bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Smart drug delivery systems (DDSs) that respond to, interact with, or are actuated by biological signals or pathological abnormalities (e.g., the tumor microenvironment) for controllable drug release are appealing therapeutic platforms for cancer treatment. Owing to their inherent self-assembled nature, nucleic acids have emerged as programmable materials for the development of multifunctional structures. In response to external environmental stimuli, DNA response elements can serve as switches to trigger conformational changes in DNA structures. Their stimulus-responsive properties make them promising candidates for constructing smart DDSs, and advancements in DNA response element-based DDSs in the field of biomedicine have been made. This review summarizes different types of DNA response elements, including DNA aptamers, DNAzymes, disulfide bond-modified DNA, pH-responsive DNA motifs, and photocleavable DNA building blocks, and highlights the advancements in DNA response element-based smart DDSs for precise drug release. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jinnan Xuan
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yuting Huang
- Department of Radiotherapy, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Chaohu 238000, P. R. China
| | - Yisi Liu
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Yuqiang Han
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Man Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
3
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Forrest NT, Vilcapoma J, Alejos K, Halvorsen K, Chandrasekaran AR. Orthogonal Control of DNA Nanoswitches with Mixed Physical and Biochemical Cues. Biochemistry 2021; 60:250-253. [PMID: 33464826 DOI: 10.1021/acs.biochem.0c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoscale devices that can respond to external stimuli have potential applications in drug delivery, biosensing, and molecular computation. Construction using DNA has provided many such devices that can respond to cues such as nucleic acids, proteins, pH, light, or temperature. However, simultaneous control of molecular devices is still limited. Here, we present orthogonal control of DNA nanoswitches using physical (light) and biochemical (enzyme and nucleic acid) triggers. Each one of these triggers controls the reconfiguration of specific nanoswitches from locked to open states within a mixture and can be used in parallel to control a combination of nanoswitches. Such dynamic control over nanoscale devices allows the incorporation of tunable portions within larger structures as well as spatiotemporal control of DNA nanostructures.
Collapse
Affiliation(s)
- Nathan T Forrest
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Kristina Alejos
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
5
|
Abstract
DNA nanotechnology has progressed from proof-of-concept demonstrations of structural design towards application-oriented research. As a natural material with excellent self-assembling properties, DNA is an indomitable choice for various biological applications, including biosensing, cell modulation, bioimaging and drug delivery. However, a major impediment to the use of DNA nanostructures in biological applications is their susceptibility to attack by nucleases present in the physiological environment. Although several DNA nanostructures show enhanced resistance to nuclease attack compared with duplexes and plasmid DNA, this may be inadequate for practical application. Recently, several strategies have been developed to increase the nuclease resistance of DNA nanostructures while retaining their functions, and the stability of various DNA nanostructures has been studied in biological fluids, such as serum, urine and cell lysates. This Review discusses the approaches used to modulate nuclease resistance in DNA nanostructures and provides an overview of the techniques employed to evaluate resistance to degradation and quantify stability.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- grid.265850.c0000 0001 2151 7947The RNA Institute, University at Albany, State University of New York, Albany, NY USA
| |
Collapse
|
6
|
Chandrasekaran AR, Mathivanan J, Ebrahimi P, Vilcapoma J, Chen AA, Halvorsen K, Sheng J. Hybrid DNA/RNA nanostructures with 2'-5' linkages. NANOSCALE 2020; 12:21583-21590. [PMID: 33089274 PMCID: PMC7644649 DOI: 10.1039/d0nr05846g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nucleic acid nanostructures with different chemical compositions have shown utility in biological applications as they provide additional assembly parameters and enhanced stability. The naturally occurring 2'-5' linkage in RNA is thought to be a prebiotic analogue and has potential use in antisense therapeutics. Here, we report the first instance of DNA/RNA motifs containing 2'-5' linkages. We synthesized and incorporated RNA strands with 2'-5' linkages into different DNA motifs with varying number of branch points (a duplex, four arm junction, double crossover motif and tensegrity triangle motif). Using experimental characterization and molecular dynamics simulations, we show that hybrid DNA/RNA nanostructures can accommodate interspersed 2'-5' linkages with relatively minor effect on the formation of these structures. Further, the modified nanostructures showed improved resistance to ribonuclease cleavage, indicating their potential use in the construction of robust drug delivery vehicles with prolonged stability in physiological conditions.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| | - Johnsi Mathivanan
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Parisa Ebrahimi
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Alan A. Chen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| |
Collapse
|
7
|
Hu J, Li WC, Qiu JG, Jiang B, Zhang CY. A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay. Analyst 2020; 145:6054-6060. [DOI: 10.1039/d0an01212b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a four-color fluorescent probe for ratiometric detection of multiple nucleases based on multistep fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen-can Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
8
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|