1
|
Aluri KC, Datta D, Waldron S, Taneja N, Qin J, Donnelly DP, Theile CS, Guenther DC, Lei L, Harp JM, Pallan PS, Egli M, Zlatev I, Manoharan M. Single-Stranded Hairpin Loop RNAs (loopmeRNAs) Potently Induce Gene Silencing through the RNA Interference Pathway. J Am Chem Soc 2024. [PMID: 39373383 DOI: 10.1021/jacs.4c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Synthetic small interfering RNAs conjugated to trivalent N-acetylgalactosamine (GalNAc) are clinically validated drugs for treatment of liver diseases. Incorporation of phosphorothioate linkages and ribose modifications are necessary for stability, potency, and duration of pharmacology. Although multiple alternative siRNA designs such as Dicer-substrate RNA, shRNA, and circular RNA have been evaluated in vitro and in preclinical studies with some success, clinical applications of these designs are limited as it is difficult to incorporate chemical modifications in these designs. An alternative siRNA design that can incorporate chemical modifications through straightforward synthesis without compromising potency will significantly advance the field. Here, we report a facile synthesis of GalNAc ligand-containing single-stranded loop hairpin RNAs (loopmeRNAs) with clinically relevant chemical modifications. We evaluated the efficiency of novel loopmeRNA designs in vivo and correlated their structure-activity relationship with the support of in vitro metabolism data. Sequences and chemical modifications in the loop region of the loopmeRNA design were optimized for maximal potency. Our studies demonstrate that loopmeRNAs can efficiently silence expression of target genes with comparable efficacy to conventional double-stranded siRNAs but reduced environmental and regulatory burdens.
Collapse
Affiliation(s)
- Krishna C Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Scott Waldron
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - June Qin
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel P Donnelly
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Dale C Guenther
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
3
|
Morihiro K, Morita S, Harada N, Baba M, Yum J, Naito M, Miyata K, Nagae G, Okamoto A. RNA Oncological Therapeutics: Intracellular Hairpin RNA Assembly Enables MicroRNA-Triggered Anticancer Functionality. J Am Chem Soc 2024; 146:1346-1355. [PMID: 38170469 DOI: 10.1021/jacs.3c09524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
RNA therapeutics are of global interest because of their versatility in targeting a variety of intracellular and extracellular biomolecules. In that context, long double-stranded RNA (dsRNA) has been studied as an antitumor agent that activates the immune response. However, its performance is constrained by poor cancer selectivity and cell-penetration ability. Here, we designed and synthesized an oncolytic RNA hairpin pair (oHP) that was selectively cytotoxic toward cancer cells expressing abundant oncogenic microRNA-21 (miR-21). Although the structure of each hairpin RNA was thermodynamically metastable, catalytic miR-21 input triggered it to open to generate a long nicked dsRNA. We demonstrated that oHP functioned as a cytotoxic amplifier of information in the presence of miR-21 in various cancer cells and tumor-bearing mice. This work represents the first example of the use of short RNA molecules as build-up-type anticancer agents that are triggered by an oncogenic miRNA.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunto Morita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Harada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Manami Baba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jongmin Yum
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Genta Nagae
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Wang Z, Fan X, Mu G, Zhao X, Wang Q, Wang J, Tang X. Cathepsin B-activatable cyclic antisense oligonucleotides for cell-specific target gene knockdown in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:548-558. [PMID: 37588686 PMCID: PMC10425675 DOI: 10.1016/j.omtn.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Trigger-activatable antisense oligonucleotides have been widely applied to regulate gene function. Among them, caged cyclic antisense oligonucleotides (cASOs) maintain a specific topology that temporarily inhibits their interaction with target genes. By inserting linkers that respond to cell-specific endogenous stimuli, they can be powerful tools and potential therapeutic agents for specific types of cancer cells with low off-target effects on normal cells. Here, we developed enzyme-activatable cASOs by tethering two terminals of linear antisense oligonucleotides through a cathepsin B (CB) substrate peptide (Gly-Phe-Leu-Gly [GFLG]), which could be efficiently uncaged by CB. CB-activatable cASOs were used to successfully knock down two disease-related endogenous genes in CB-abundant PC-3 tumor cells at the mRNA and protein levels but had much less effect on gene knockdown in CB-deficient human umbilical vein endothelial cell (HUVECs). In addition, reduced nonspecific immunostimulation was found using cASOs compared with their linear counterparts. Further in vivo studies indicated that CB-activatable cASOs showed effective tumor inhibition in PC-3 tumor model mice through downregulation of translationally controlled tumor protein (TCTP) protein in tumors. This study applies endogenous enzyme-activatable cASOs for antitumor therapy in tumor model mice, which demonstrates a promising stimulus-responsive cASO strategy for cell-specific gene knockdown upon endogenous activation and ASO prodrug development.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Guanqun Mu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| |
Collapse
|
5
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
6
|
Morihiro K, Osumi H, Morita S, Hattori T, Baba M, Harada N, Ohashi R, Okamoto A. Oncolytic Hairpin DNA Pair: Selective Cytotoxic Inducer through MicroRNA-Triggered DNA Self-Assembly. J Am Chem Soc 2023; 145:135-142. [PMID: 36538570 DOI: 10.1021/jacs.2c08974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Artificial nucleic acids have attracted much attention as potential cancer immunotherapeutic materials because they are recognized by a variety of extracellular and intracellular nucleic acid sensors and can stimulate innate immune responses. However, their low selectivity for cancer cells causes severe systemic immunotoxicity, making it difficult to use artificial nucleic acid molecules for immune cancer therapy. To address this challenge, we herein introduce a hairpin DNA assembly technology that enables cancer-selective immune activation to induce cytotoxicity. The designed artificial DNA hairpins assemble into long nicked double-stranded DNA triggered by intracellular microRNA-21 (miR-21), which is overexpressed in various types of cancer cells. We found that the products from the hairpin DNA assembly selectively kill miR-21-abundant cancer cells in vitro and in vivo based on innate immune activation. Our approach is the first to allow selective oncolysis derived from intracellular DNA self-assembly, providing a powerful therapeutic modality to treat cancer.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiraki Osumi
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunto Morita
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takara Hattori
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Manami Baba
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Harada
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Riuko Ohashi
- Histopathology Core Facility, Faculty of Medicine, Niigata University, Niigata 951-8510, Japan.,Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Structural Modifications of siRNA Improve Its Performance In Vivo. Int J Mol Sci 2023; 24:ijms24020956. [PMID: 36674473 PMCID: PMC9862127 DOI: 10.3390/ijms24020956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The use of small interfering RNA (siRNA) in the clinic gives a wide range of possibilities for the treatment of previously incurable diseases. However, the main limitation for biomedical applications is their delivery to target cells and organs. Currently, delivery of siRNA to liver cells is a solved problem due to the bioconjugation of siRNA with N-acetylgalactosamine; other organs remain challenging for siRNA delivery to them. Despite the important role of the ligand in the composition of the bioconjugate, the structure and molecular weight of siRNA also play an important role in the delivery of siRNA. The basic principle is that siRNAs with smaller molecular weights are more efficient at entering cells, whereas siRNAs with larger molecular weights have advantages at the organism level. Here we review the relationships between siRNA structure and its biodistribution and activity to find new strategies for improving siRNA performance.
Collapse
|
8
|
Zhang X, Gubu A, Xu J, Yan N, Su W, Feng D, Wang Q, Tang X. Tetrazine-Induced Bioorthogonal Activation of Vitamin E-Modified siRNA for Gene Silencing. Molecules 2022; 27:molecules27144377. [PMID: 35889249 PMCID: PMC9316517 DOI: 10.3390/molecules27144377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. The bioorthogonal bond-cleavage reaction of benzonorbonadiene and tetrazine is a promising trigger in siRNA temporal activation. Here, we developed a new method for the bio-orthogonal chemical activation of siRNA based on the tetrazine-induced bond-cleavage reaction. Small-molecule activatable caged siRNAs were developed with the 5'-vitamin E-benzonobonadiene-modified antisense strand targeting the green fluorescent protein (GFP) gene and the mitotic kinesin-5 (Eg5) gene. The addition of tetrazine triggered the reaction with benzonobonadiene linker and induced the linker cleavage to release the active siRNA. Additionally, the conditional gene silencing of both exogenous GFP and endogenous Eg5 genes was successfully achieved with 5'-vitamin E-benzonobonadiene-caged siRNAs, which provides a new uncaging strategy with small molecules.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Jianfei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Ning Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Wenbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Di Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Rd., Beijing 100191, China; (X.Z.); (A.G.); (J.X.); (N.Y.); (W.S.); (D.F.); (Q.W.)
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence:
| |
Collapse
|
9
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
10
|
Jahns H, Degaonkar R, Podbevsek P, Gupta S, Bisbe A, Aluri K, Szeto J, Kumar P, LeBlanc S, Racie T, Brown CR, Castoreno A, Guenther DC, Jadhav V, Maier MA, Plavec J, Egli M, Manoharan M, Zlatev I. Small circular interfering RNAs (sciRNAs) as a potent therapeutic platform for gene-silencing. Nucleic Acids Res 2021; 49:10250-10264. [PMID: 34508350 PMCID: PMC8501968 DOI: 10.1093/nar/gkab724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
In order to achieve efficient therapeutic post-transcriptional gene-silencing mediated by the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be chemically modified. Several supra-RNA structures, with the potential to stabilize siRNAs metabolically have been evaluated for their ability to induce gene silencing, but all have limitations or have not been explored in therapeutically relevant contexts. Covalently closed circular RNA transcripts are prevalent in eukaryotes and have potential as biomarkers and disease targets, and circular RNA mimics are being explored for use as therapies. Here we report the synthesis and evaluation of small circular interfering RNAs (sciRNAs). To synthesize sciRNAs, a sense strand functionalized with the trivalent N-acetylgalactosamine (GalNAc) ligand and cyclized using ‘click’ chemistry was annealed to an antisense strand. This strategy was used for synthesis of small circles, but could also be used for synthesis of larger circular RNA mimics. We evaluated various sciRNA designs in vitro and in vivo. We observed improved metabolic stability of the sense strand upon circularization and off-target effects were eliminated. The 5′-(E)-vinylphosphonate modification of the antisense strand resulted in GalNAc-sciRNAs that are potent in vivo at therapeutically relevant doses. Physicochemical studies and NMR-based structural analysis, together with molecular modeling studies, shed light on the interactions of this novel class of siRNAs, which have a partial duplex character, with the RNAi machinery.
Collapse
Affiliation(s)
- Hartmut Jahns
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Peter Podbevsek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, EU
| | - Swati Gupta
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Anna Bisbe
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Krishna Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - John Szeto
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Pawan Kumar
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Sarah LeBlanc
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Tim Racie
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | | | - Vasant Jadhav
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, EU
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Yang L, Trentini D, Kim H, Sul J, Eberwine JH, Dmochowski IJ. Photoactivatable Circular Caged Oligonucleotides for Transcriptome In Vivo Analysis (TIVA). CHEMPHOTOCHEM 2021; 5:940-946. [DOI: 10.1002/cptc.202100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linlin Yang
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Dora Trentini
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - HyunBum Kim
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - Jai‐Yoon Sul
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - James H. Eberwine
- Department of Pharmacology University of Pennsylvania 38 John Morgan Building 3620 Hamilton Walk Philadelphia PA 19104-6084 USA
| | - Ivan J. Dmochowski
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
12
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 880] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
Affiliation(s)
- Melanie Winkle
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division - Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences - National Research Centre, Cairo, Egypt
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
| |
Collapse
|
13
|
Yang L, Dmochowski IJ. Conditionally Activated ("Caged") Oligonucleotides. Molecules 2021; 26:1481. [PMID: 33803234 PMCID: PMC7963183 DOI: 10.3390/molecules26051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
Conditionally activated ("caged") oligonucleotides provide useful spatiotemporal control for studying dynamic biological processes, e.g., regulating in vivo gene expression or probing specific oligonucleotide targets. This review summarizes recent advances in caging strategies, which involve different stimuli in the activation step. Oligo cyclization is a particularly attractive caging strategy, which simplifies the probe design and affords oligo stabilization. Our laboratory developed an efficient synthesis for circular caged oligos, and a circular caged antisense DNA oligo was successfully applied in gene regulation. A second technology is Transcriptome In Vivo Analysis (TIVA), where caged oligos enable mRNA isolation from single cells in living tissue. We highlight our development of TIVA probes with improved caging stability. Finally, we illustrate the first protease-activated oligo probe, which was designed for caspase-3. This expands the toolkit for investigating the transcriptome under a specific physiologic condition (e.g., apoptosis), particularly in specimens where light activation is impractical.
Collapse
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA;
| |
Collapse
|
14
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
15
|
Sui Z, An R, Komiyama M, Liang X. Stepwise Strategy for One-Pot Synthesis of Single-Stranded DNA Rings from Multiple Short Fragments. Chembiochem 2020; 22:1005-1011. [PMID: 33124728 DOI: 10.1002/cbic.202000738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cyclic rings of single-stranded (ss) DNA have various unique properties, but wider applications have been hampered by their poor availability. This paper reports a convenient one-pot method in which these rings are efficiently synthesized by using T4 DNA ligase through convergent cyclization of easily available short DNA fragments. The key to the present method is to separate all the splint oligonucleotides into several sets, and add each set sequentially at an appropriate interval to the solutions containing all the short DNA fragments. Compared with simple one-pot strategies involving simultaneous addition of all the splints at the beginning of the reaction, both the selectivity and the yields of target ssDNA rings are greatly improved. This convergent method is especially useful for preparing large-sized rings that are otherwise hard to obtain. By starting from six short DNA fragments (71-82 nt), prepared by a DNA synthesizer, a ssDNA ring of 452-nt size was synthesized in 35 mol % yield and in high selectivity. Satisfactorily pure DNA rings were obtainable simply by treating the crude products with exonuclease.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
16
|
Chen C, Wang Z, Jing N, Chen W, Tang X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changmai Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Wei Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| |
Collapse
|
17
|
Chen C, Jing N, Wang Z, Zhang Y, Chen W, Tang X. Multimerized self-assembled caged two-in-one siRNA nanoparticles for photomodulation of RNAi-induced gene silencing. Chem Sci 2020; 11:12289-12297. [PMID: 34094437 PMCID: PMC8162473 DOI: 10.1039/d0sc03562a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We rationally designed and developed caged siRNA nanoparticles (Multi-Chol-siRNA) self-assembled with cholesterol-modified multimerized caged siRNAs for photomodulation of siRNA gene silencing activity. Strong resistance to serum nuclease and RNase A was observed for these cholesterol-modified caged siRNA nanoparticles due to the formation of nanostructures with high intensity of siRNA. These caged Multi-Chol-siRNA self-assembled nanoparticles were successfully used to achieve photochemical regulation of both exogenous GFP and endogenous Eg5 gene expressions with a GFP/RFP transient transfection system and Eg5-associated assays, respectively. Further, Two-in-One caged Multi-Chol-siGFP/siEg5 self-assembled nanoparticles simultaneously targeting GFP and Eg5 genes were also developed. The caged Multi-Chol-siRNA self-assembled nanoparticles have demonstrated the effectiveness of enhancing photomodulation of multiple RNAi-induced gene silencing activities in cells. Upon light irradiation, multimerized self-assembled caged Two-in-One siRNA nanoparticles (Multi-Chol-siRNA) were collapsed to release trapped siRNAs for multiple RNAi-induced gene silencing activity.![]()
Collapse
Affiliation(s)
- Changmai Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Wei Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
18
|
Abstract
Light-activated ("caged") oligonucleotides provide a strategy for modulating the activity of antisense oligos, siRNA, miRNA, aptamers, DNAzymes, and mRNA-capturing probes with high spatiotemporal resolution. However, the near-UV and visible wavelengths that promote these bond-breaking reactions poorly penetrate living tissue, which limits some biological applications. To address this issue, we describe the first example of a protease-activated oligonucleotide probe, capable of reporting on caspase-3 during cellular apoptosis. The 2'-F RNA-peptide substrate-peptide nucleic acid (PNA) hairpin structure was generated in 30% yield in a single bioconjugation step.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - James H Eberwine
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|