1
|
Yang Y, Huang P, Ma X, Yang D, Liang J, Jin Y, Jiang L, Zhao L, Chen D, He J, Wang J. Facile synthesis of δ-MnO 2 biotemplated by waste tobacco stem-silks for enhanced removal of Sb(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7543-7555. [PMID: 38165545 DOI: 10.1007/s11356-023-31663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024]
Abstract
The elimination of antimony pollution has attracted increasing concerns because of its high toxicity to human health and the natural environment. In this work, biomimetic δ-MnO2 was synthesized by using waste tobacco stem-silks as biotemplate (Bio-δ-MnO2) and used in the capture of Sb(III)from aqueous solution. The tobacco stem-silks not only provided unique wrinkled morphologies but also contained carbon element self-doped into the resulting samples. The maximum Sb(III) adsorption capacity reached 763.4 mg∙g -1, which is 2.06 times higher than δ-MnO2 without template (370.0 mg∙g -1), 4.53 times than tobacco stem-silks carbon (168.5 mg∙g -1), and 10.39 times than commercial MnO2 (73.5 mg∙g -1), respectively. The isotherm and kinetic studies indicated that the adsorption behavior was consistent with the Langmuir isotherm model and the pseudo-second-order kinetic equation. As far as we are aware, the adsorption capacity of Bio-δ-MnO2 is much higher than that of most Sb(III) adsorbents. FT-IR, XPS, SEM, XRD, and Zeta potential analyses showed that the main mechanism for the adsorption of Sb(III) by Bio-δ-MnO2 includes electrostatic attraction, surface complexation, and redox. Overall, this study provides a new sustainable way to convert agricultural wastes to more valuable products such as biomimetic adsorbent for Sb(III) removal in addition to conventional activated carbon and biochar.
Collapse
Affiliation(s)
- Yepeng Yang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Pizhen Huang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiaoqian Ma
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Donghan Yang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaxuan Liang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yixin Jin
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liang Jiang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lixia Zhao
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Daomei Chen
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiao He
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
2
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
3
|
Yang H, Yang Y, Jiang L, Wang Y, Chen Y, He J, Wang W, Wang J. Photocatalytic reduction of Cr(VI) within mesoporous TiO
2
templated and confined with chlorophyll. NANO SELECT 2021. [DOI: 10.1002/nano.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Haiyan Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Yuanfeng Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Yongjuan Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Jiao He
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Wei Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, School of Chemical Sciences and Technology Yunnan University Kunming China
| |
Collapse
|