1
|
Li L, Zhao Y, Zang J, Yu L, Young DJ, Ren ZG, Li HX. Schiff-base Polymer Immobilized Ruthenium for Efficient Catalytic Cross-coupling of Secondary Alcohols with 2-amino- and γ-aminobenzyl Alcohols to Give Quinolines and Pyridines. Chem Asian J 2024; 19:e202400005. [PMID: 38296810 DOI: 10.1002/asia.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
A Schiff-base porous polymer has been impregnated with ruthenium trichloride for acceptor-free dehydrogenation coupling (ADC) of secondary alcohols with γ-amino- and 2-aminobenzyl alcohols to give pyridines and quinolines. This heterogenous catalyst exhibited high catalytic efficiency over repeated cycles with wide functional group tolerance.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Narzary BB, Baker BC, Faul CFJ. Selective CO 2 Electroreduction from Tuneable Naphthalene-Based Porous Polyimide Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211795. [PMID: 36918275 DOI: 10.1002/adma.202211795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Indexed: 05/19/2023]
Abstract
A series of porous polyimides (pPIs) are synthesized, and their surface areas and pore sizes are optimized by the previously reported Bristol-X'an-Jiatong (BXJ) approach. How this approach can be used to tune and optimize the porous network properties to target and tune their ability to capture CO2 is demonstrated. Once optimized, these porous organic frameworks are utilized, for the first time, as electrocatalysts for the conversion of CO2 . The excellent Faradaic efficiencies (FEs) for the conversion of CO2 to formate (91%) and methanol (85%) present exciting opportunities for the metal-free generation of useful fuels and feedstocks from CO2 . In addition, the ability to directly address and select the conversion products through tuning of the porous materials' properties highlights the potential of this approach, and more generally for a wide range of organic frameworks as future metal-free CO2 reduction catalysts.
Collapse
Affiliation(s)
| | - Benjamin C Baker
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Charl F J Faul
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
3
|
Das J, Rawat S, Maiti A, Singh L, Pradhan D, Mohanty P. Adsorption of Hg2+ on Cyclophosphazene and Triazine Moieties based Inorganic-organic Hybrid Nanoporous Materials Synthesized by Microwave Assisted Method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Chen H, Liu S, Lv H, Qin QP, Zhang X. Nanoporous {Y 2}-Organic Frameworks for Excellent Catalytic Performance on the Cycloaddition Reaction of Epoxides with CO 2 and Deacetalization-Knoevenagel Condensation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18589-18599. [PMID: 35417126 DOI: 10.1021/acsami.2c02929] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stable metal-organic frameworks containing periodically arranged nanosized pores and active Lewis acid-base active sites are considered as ideal candidates for efficient heterogeneous catalysis. Herein, the exquisite combination of [Y2(CO2)7(H2O)2] cluster (abbreviated as {Y2}) and multifunctional linker of 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) led to a nanoporous framework of {[Y2(TDP)(H2O)2]·5H2O·4DMF}n (NUC-53, NUC = North University of China), which is a rarely reported binuclear three-dimensional (3D) framework with hierarchical tetragonal-microporous (0.78 nm) and octagonal-nanoporous (1.75 nm) channels. The inner walls of these channels are aligned by {Y2} clusters and plentifully coexisted Lewis acid-base sites of YIII ions and Npyridine atoms. Furthermore, NUC-53 has a quite large void volume of ∼65.2%, which is significantly higher than most documented 3D rare-earth-based MOFs. The performed catalytic experiments exhibited that activated NUC-53 showed a high catalytic activity on the cycloaddition reactions of CO2 with styrene oxide under mild conditions with excellent turnover number (TON: 1980) and turnover frequency (TOF: 495 h-1). Moreover, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile could be efficiently prompted by the heterogeneous catalyst of NUC-53. These findings not only pave the way for the construction of nanoporous MOF based on rare-earth clusters with a variety of catalytic activities but also provide some new insights into the catalytic mechanism.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
5
|
Zhang T, Chen H, Liu S, Lv H, Zhang X, Li Q. Highly Robust {Ln 4}-Organic Frameworks (Ln = Ho, Yb) for Excellent Catalytic Performance on Cycloaddition Reaction of Epoxides with CO 2 and Knoevenagel Condensation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04260] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Qiaoling Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
6
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Aggrawal S, Sharma R, Mohanty P. CuO immobilized paper matrices: A green catalyst for conversion of CO2 to cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Chen H, Fan L, Hu T, Zhang X. 6s-3d {Ba 3Zn 4}-Organic Framework as an Effective Heterogeneous Catalyst for Chemical Fixation of CO 2 and Knoevenagel Condensation Reaction. Inorg Chem 2021; 60:3384-3392. [PMID: 33595310 DOI: 10.1021/acs.inorgchem.0c03736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exquisite combination of Ba2+ and Zn2+ with the aid of 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) under the condition of solvothermal self-assembly generates one highly robust [Ba3Zn4(CO2)12(HCO2)2(OH2)2]-organic framework of {[Ba3Zn4(TDP)2(HCO2)2(OH2)2]·7DMF·4H2O}n (NUC-27), in which adjacent 2D layers are interlaced via hydrogen-bonding interactions to form a 3D skeleton with peapod-like channels and nano-caged voids. It is worth emphasizing that both Ba2+ and Zn2+ ions in NUC-27 display the extremely low coordination modes: hexa-coordinated [Ba(1)] and tetra-coordinated [Ba(2), Zn(1), and Zn(2)]. Furthermore, to the best our knowledge, NUC-27 is one scarcely reported 2D-based nanomaterial with an unprecedented Z-shaped hepta-nuclear heterometallic cluster of [Ba3Zn4(CO2)12(HCO2)2(OH2)2] as SBUs, which not only has plentiful low-coordinated open metal sites but also has the excellent physicochemical properties including omni-directional opening pores, ultrahigh porosity, larger specific surface area, and the coexistence of Lewis acid-base sites. Just as expected, thanks to its rich active metal sites and pyridine groups as strong Lewis acid-base roles, completely activated NUC-27 displays high catalytic efficiency on the chemical transformation of epoxides with CO2 into cyclic carbonates under mild conditions and effectively accelerates the reaction process of Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
9
|
Narzary BB, Baker BC, Yadav N, D'Elia V, Faul CFJ. Crosslinked porous polyimides: structure, properties and applications. Polym Chem 2021. [DOI: 10.1039/d1py00997d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous polyimides (pPIs) represent a fascinating class of porous organic polymers (POPs). Here the properties and functions of amorphous and crystalline pPIs are reviewed, and applications contributing to solutions to global challenges highlighted.
Collapse
Affiliation(s)
| | | | - Neha Yadav
- School of Molecular Science and Engineering, VISTEC, Thailand
| | - Valerio D'Elia
- School of Molecular Science and Engineering, VISTEC, Thailand
| | | |
Collapse
|
10
|
Rui Li J, Chen C, Lin Hu Y. Novel and Efficient Knoevenagel Condensation over Mesoporous SBA‐15 Supported Acetate‐functionalized Basic Ionic Liquid Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202004048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Rui Li
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Chen Chen
- College of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials China Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
11
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
12
|
Bansal A, Sharma R, Mohanty P. Nanocasted polytriazine-SBA-16 mesoporous composite for the conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Sperandio C, Rodriguez J, Quintard A. Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1,3,5-triols catalysts. Org Biomol Chem 2020; 18:2637-2640. [PMID: 32196062 DOI: 10.1039/d0ob00402b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to improve epoxides conversion to carbonates by fixation of CO2 a new type of perfluorinated triol catalysts was developed. These simple acyclic scaffolds of enhanced acidity are efficient for catalysis through selective H-bonding activation of the epoxide. In combination with TBAI as co-catalyst, this useful transformation is performed under only 1 atmosphere of CO2 and between 30 to 80 °C. Both the 1,3,5-triol motif and the perfluorinated side chains are crucial in order to observe this epoxide opening under such mild conditions. In addition, the stereochemistry of the starting epoxide can efficiently be conserved during the carbonate formation.
Collapse
Affiliation(s)
- Céline Sperandio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|