1
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Anbiaee G, Feizpour R, Khoshbin Z, Ramezani M, Alibolandi M, Taghdisi SM, Abnous K. A simple tag-free fluorometric aptasensing assay for sensitive detection of kanamycin. Anal Biochem 2023; 672:115183. [PMID: 37169123 DOI: 10.1016/j.ab.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
A novel label-free and enzyme-free fluorescence aptasensing assay that uses Sybr Green I (SGI) as the signal indicator for the kanamycin determination was designed. An aptamer-complementary strand (Apt/CP) conjugate was formed, which provided the intercalation sites for SGI and, therefore, a considerable fluorescent signal. The introduction of the target led to the separation of Apt from CP due to the high affinity of Apt toward kanamycin. Hence, the suitable intercalation gaps reduced, which resulted in a decrease in the generated fluorescent signal. Under optimized conditions, a broad linear concentration range from 0.05 μM to 20 μM and a limit of detection of 11.76 nM were obtained, confirming the ability of the fabricated aptasensor for sensitive and specific kanamycin detection in real samples such as milk and human serum. The aptasensing method has the potential to be extensively employed in the food industry and veterinary science due to its simplicity, sensitivity, user-friendly, and capability of on-site detection of kanamycin.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Feizpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Huang Z, Guo X, Ma X, Wang F, Jiang JH. Genetically encodable tagging and sensing systems for fluorescent RNA imaging. Biosens Bioelectron 2023; 219:114769. [PMID: 36252312 DOI: 10.1016/j.bios.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/06/2022]
Abstract
Live cell imaging of RNAs is crucial to interrogate their fundamental roles in various biological processes. The highly spatiotemporal dynamic nature of RNA abundance and localization has presented great challenges for RNA imaging. Genetically encodable tagging and sensing (GETS) systems that can be continuously produced in living systems have afforded promising tools for imaging and sensing RNA dynamics in live cells. Here we review the recent advances of GETS systems that have been developed for RNA tagging and sensing in live cells. We first describe the various GETS systems using MS2-bacteriophage-MS2 coat protein, pumilio homology domain and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9/13 for RNA labeling and tracking. The progresses of GETS systems for fluorogenic labeling and/or sensing RNAs by engineering light-up RNA aptamers, CRISPR-Cas9 systems and RNA aptamer stabilized fluorogenic proteins are then elaborated. The challenges and future perspectives in this field are finally discussed. With the continuing development, GETS systems will afford powerful tools to elucidate RNA biology in living systems.
Collapse
Affiliation(s)
- Zhimei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaoyan Guo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xianbo Ma
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Rapid screening of antimicrobial probiotics using CRISPR cascade. Biosens Bioelectron 2022; 216:114673. [DOI: 10.1016/j.bios.2022.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
|
5
|
Li Y, Yang F, Li S, Yuan R, Xiang Y. Target-triggered tertiary amplifications for sensitive and label-free protein detection based on lighting-up RNA aptamer transcriptions. Anal Chim Acta 2022; 1217:340028. [DOI: 10.1016/j.aca.2022.340028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
|
6
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
7
|
Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron 2022; 211:114282. [DOI: 10.1016/j.bios.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 01/04/2023]
|
8
|
Xu J, Zhang X, Yan C, Qin P, Yao L, Wang Q, Chen W. Trigging Isothermal Circular Amplification-Based Tuning of Rigorous Fluorescence Quenching into Complete Restoration on a Multivalent Aptamer Probe Enables Ultrasensitive Detection of Salmonella. Anal Chem 2021; 94:1357-1364. [PMID: 34963277 DOI: 10.1021/acs.analchem.1c04638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of pathogenic bacteria is of vital significance for combating and preventing infectious diseases. In this work, we developed a multivalent aptamer probe (Multi-VAP)-based trigging isothermal circular amplification (TICA) for rapidly and ultrasensitively detecting Salmonella. In this sensing system, the fluorescence of Multi-VAP was strongly quenched via the dual effect of FRET. Introduction of Salmonella to the system forced the configuration change of Multi-VAP, leading to the occurrence of a TICA responsible for tuning all of the fluorescence-quenched Multi-VAP into a complete restoration state. This prominent feature allows the reasonable combination of a strong background restraint and great target signal amplification into one sensing system, which in turn benefits the improvement of the signal-to-noise ratio to ensure that the system has an ultrahigh sensitivity. Combined with the employment of an aptamer to ensure that it has excellent specificity, the Salmonella can be quantitatively and qualitatively analyzed even from human serum. The total processing merely requires sample addition and incubation. The turnaround time of the complete analysis from "sample-to-result" was within 30 min. With the method to decrease the time to detect and simplify the process to operate, the assay was successfully used as a sensing platform for specific detection of as few as 9 CFU/mL Salmonella.
Collapse
Affiliation(s)
- Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
9
|
Citartan M. The dynamicity of light-up aptamers in one-pot in vitro diagnostic assays. Analyst 2021; 147:10-21. [PMID: 34860215 DOI: 10.1039/d1an01690c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Light-up aptamers are aptamers that ignite the fluorescence emission of certain dyes upon binding. Widely harnessed in in vivo imaging, the binding capacity of the light-up aptamers can also be deployed in in vitro diagnostic assays, engendering a mix-and-read format. Intrigued by this, I intend to provide an overview of the various formats of diagnostic assays developed using light-up aptamers from the direct modulation of the light-up aptamers, split aptamer-based configuration, strand displacement, in vitro transcription-based one-pot diagnostic assay, CRISPR-Cas system to the measurement of the ion reliance. The incorporation of the light-up aptamers into each configuration is expounded and further supported by describing the exemplary assays developed thus far. It is anticipated that the present study can be enlightening to any researchers who aspire to embark on the development of one-pot in vitro diagnostic assays based on light-up aptamers.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
10
|
Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor Technologies in Medicine: from Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem Tekhnologii Med 2021; 12:70-83. [PMID: 34796021 PMCID: PMC8596237 DOI: 10.17691/stm2020.12.6.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 01/21/2023] Open
Abstract
Infections are a major cause of premature death. Fast and accurate laboratory diagnostics of infectious diseases is a key condition for the timely initiation and success of treatment. Potentially, it can reduce morbidity, as well as prevent the outbreak and spread of dangerous epidemics. The traditional methods of laboratory diagnostics of infectious diseases are quite time- and labour-consuming, require expensive equipment and trained personnel, which is crucial within limited resources. The fast biosensor-based methods that combine the diagnostic capabilities of biomedicine with modern technological advances in microelectronics, optoelectronics, and nanotechnology make an alternative. The modern achievements in the development of label-free biosensors make them promising diagnostic tools that combine rapid detection of specific molecular markers, simplicity, ease-of-use, efficiency, accuracy, and cost-effectiveness with the tendency to the development of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up broad prospects for using these analytical systems in clinical practice directly at the site of medical care provision (point-of-care, POC concept). A wide variety of modern biosensor designs are based on the use of diverse formats of analytical and technological strategies, identification of various regulatory and functional molecular markers associated with infectious pathogens. The solution to the existing problems in biosensing will open up great prospects for these rapidly developing diagnostic biotechnologies.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - E V Matosova
- Junior Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - L M Somova
- Professor, Chief Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
11
|
Chen X, Yang Z, Ai L, Zhou S, Fan H, Ai S. Signal‐off Photoelectrochemical Aptasensor for
S. aureus
Detection Based on Graphite‐like Carbon Nitride Decorated with Nickel Oxide. ELECTROANAL 2021. [DOI: 10.1002/elan.202100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqi Chen
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea Marine College Hainan University Haikou 570228 PR China
| | - Luchen Ai
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Shuang Zhou
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Hai Fan
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| | - Shiyun Ai
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong PR China
| |
Collapse
|
12
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
13
|
Kim JH, Kim S, Hwang SH, Yoon TH, Park JS, Lee ES, Woo J, Park KS. Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria. SENSORS 2021; 21:s21124132. [PMID: 34208674 PMCID: PMC8235052 DOI: 10.3390/s21124132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum.
Collapse
|
14
|
|
15
|
Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range. J Mater Chem B 2021; 8:3623-3630. [PMID: 31934712 DOI: 10.1039/c9tb02388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Programmed biosensors with tunable quantification range and sensitivity would greatly broaden their application in medical diagnosis, food safety and environmental analysis. Herein, we proposed a graphene-nucleic acid biointerface-engineered biosensor, allowing target molecules to be detected with adjustable dynamic ranges and sensitivities. The biosensors were programmed by simply tuning the poly A tail of aptamer probes. The tuning of the poly A tail would allow the interaction between aptamer probes and graphene oxide (GO) to be modulated, in turn programing the competitive binding processes of aptamer probes to target molecules and GO. The biosensors, termed affinity-tunable aptasensors (atAptasensors) could be easily tuned with different dynamic ranges by using aptamer probes with different tail lengths, and the dynamic range could be extended to be over 3 orders by a combined use of multiple aptamer probes. Remarkably, the specificity of aptamer probes could be increased by increasing the interaction between aptamer probes and GO. Reliability of atAptasensor for ATP detection was tested in serum and milk samples, and we also applied atAptasensor for culture-independent analysis of microorganism pollution.
Collapse
Affiliation(s)
- Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ryckelynck M. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. Methods Mol Biol 2021; 2166:73-102. [PMID: 32710404 DOI: 10.1007/978-1-0716-0712-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
17
|
Zhang Y, Wu C, Liu H, Khan MR, Zhao Z, He G, Luo A, Zhang J, Deng R, He Q. Label-free DNAzyme assays for dually amplified and one-pot detection of lead pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124790. [PMID: 33316668 DOI: 10.1016/j.jhazmat.2020.124790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/05/2023]
Abstract
Lead pollution in water and soil often transfers to food, advocating tools for on-site detection of lead pollution to ensure both environmental and food safety. We proposed a label-free, dually amplified and homogeneous DNAzyme assay for sensitive and one-pot detection of lead pollution. Instead of using chemically modified DNA substrate, a structure-response digestion process was introduced to monitor Pb2+ presence-induced cleavage process of unlabeled substrate, further amplifying the response signals and eliminating the use of labeled DNA probes. The DNAzyme assay allowed to detect Pb2+ as low as 0.12 nM and endued a dynamic range from 0.1 nM to 30 nM. In addition, it can specifically identify Pb2+ among other metal ions. We demonstrated that the DNAzyme assay can precisely detect Pb2+ in tap water, milk and fish. Thus, the DNAzyme assay is promising for on-site monitoring lead pollution risk and ensuring environmental and food safety.
Collapse
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Hongxin Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 10048, China
| | - Jiaqi Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Swetha P, Fan Z, Wang F, Jiang JH. Genetically encoded light-up RNA aptamers and their applications for imaging and biosensing. J Mater Chem B 2021; 8:3382-3392. [PMID: 31984401 DOI: 10.1039/c9tb02668a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular small ligands and biomacromolecules are playing crucial roles not only as executors but also as regulators. It is essential to develop tools to investigate their dynamics to interrogate their functions and reflect the cellular status. Light-up RNA aptamers are RNA sequences that can bind with their cognate nonfluorescent fluorogens and greatly activate their fluorescence. The emergence of genetically encoded light-up RNA aptamers has provided fascinating tools for studying intracellular small ligands and biomacromolecules owing to their high fluorescence activation degree and facile programmability. Here we review the burgeoning field of light-up RNA aptamers. We first briefly introduce light-up RNA aptamers with a focus on the photophysical properties of the fluorogens. Then design strategies of genetically encoded light-up RNA aptamer based sensors including turn-on, signal amplification and ratiometric rationales are emphasized.
Collapse
Affiliation(s)
- Puchakayala Swetha
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hu-nan University, Changsha, 410082, P. R. China.
| | | | | | | |
Collapse
|
19
|
Wang Y, Zhang Y, Chen J, Wang M, Zhang T, Luo W, Li Y, Wu Y, Zeng B, Zhang K, Deng R, Li W. Detection of SARS-CoV-2 and Its Mutated Variants via CRISPR-Cas13-Based Transcription Amplification. Anal Chem 2021; 93:3393-3402. [PMID: 33511840 PMCID: PMC7860141 DOI: 10.1021/acs.analchem.0c04303] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global health emergency, and its gene mutation and evolution further posed uncertainty of epidemic risk. Herein, we reported a light-up CRISPR-Cas13 transcription amplification method, which enables the detection of SARS-CoV-2 and its mutated variants. Sequence specificity was ensured by both the ligation process and Cas13a/crRNA recognition, allowing us to identify viral RNA mutation. Light-up RNA aptamer allows sensitive output of amplification signals via target-activated ribonuclease activity of CRISPR-Cas13a. The RNA virus assay has been designed to detect coronavirus, SARS-CoV-2, Middle East respiratory syndrome (MERS), and SARS, as well as the influenza viruses such as, H1N1, H7N9, and H9N2. It was accommodated to sense as low as 82 copies of SARS-CoV-2. Particularly, it allowed us to strictly discriminate key mutation of the SARS-CoV-2 variant, D614G, which may induce higher epidemic and pathogenetic risk. The proposed RNA virus assays are promising for point-of-care monitoring of SARS-CoV-2 and its risking variants.
Collapse
Affiliation(s)
- Yuxi Wang
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy
Food Evaluation Research Center, Sichuan University, Chengdu
610065, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan
University, Chengdu, Sichuan 610064, China
| | - Minjin Wang
- Department of Laboratory Medicine, West
China Hospital of Sichuan University, Chengdu 610041,
China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy
Food Evaluation Research Center, Sichuan University, Chengdu
610065, China
| | - Wenxin Luo
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Bo Zeng
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of
Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou
University, Zhengzhou 450001, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy
Food Evaluation Research Center, Sichuan University, Chengdu
610065, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine,
West China Medical School/West China Hospital, Sichuan
University, Chengdu 610041, China
| |
Collapse
|
20
|
Jia Y, Shen X, Sun F, Na N, Ouyang J. Metal-DNA coordination based bioinspired hybrid nanospheres for in situ amplification and sensing of microRNA. J Mater Chem B 2020; 8:11074-11081. [PMID: 33201165 DOI: 10.1039/d0tb02315a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sufficient delivery of biomolecules into cells with high loading efficiency and easy cleavability would be significant for the visualization of biomolecules in living cells. Herein, a facile approach based on nano-wire balls (NWs) for efficient loading, intracellular delivery of nucleic acids and in situ targeted miRNA bioimaging is proposed, by feeding of Zn ions for generating DNA-inorganic hybrid structures with large surface areas and good stability. Given that the versatile and robust hybridization chain reaction (HCR) amplification strategy combines DNA assembly with intracellular assay, the resulting NWs without any complicated modification are capable of enhanced signals for the targeted imaging of cancer cells. This method realized a linear detection range of 100 fM to 10 nM, with a low detection limit of 83.6 fM in vitro, and could be used to effectively differentiate the expression levels of miRNA-21 in living cells. Due to its high loading efficiency, excellent biocompatibility and low toxicity, this system can be used to construct a coordination-based delivery nanoplatform for in situ enzyme-free amplified imaging of miRNAs, expanding the application of DNA-based nanomaterials for cellular delivery and intracellular molecule analysis.
Collapse
Affiliation(s)
- Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xiaotong Shen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feifei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Zhang T, Zhou W, Lin X, Khan MR, Deng S, Zhou M, He G, Wu C, Deng R, He Q. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosens Bioelectron 2020; 176:112906. [PMID: 33342694 DOI: 10.1016/j.bios.2020.112906] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/08/2023]
Abstract
Viable pathogenic bacteria cause serious human diseases via systemic infections and food poisoning. Herein, we constructed a light-up RNA aptamer signaling-CRISPR-Cas13a assay enabling mix-and-read detection of viable pathogenic bacteria. Directly targeting pathogen RNAs via CRISPR-Cas13a allows precisely discriminating viable bacteria from dead bacteria. We introduced a light-up RNA aptamer, Broccoli, serving as the substate of activated CRISPR-Cas13a to monitor the presence of pathogen RNAs, eliminating the need to use chemically labeled RNA substrate. Sequentially, the assay allows a reverse transcription-free, nucleic acid amplification-free, and label-free quantification of RNA targets and viable pathogenic bacteria. It could detect as low as 10 CFU of Bacillus cereus and precisely quantify viable bacteria with a content ranging from 0% to 100% in 105 CFU total bacteria. The quantification of viable bacteria allows more accurately estimating the ability of B. cereus to spoil food. The RNA assay promises its use in point-of-use detection of viable pathogens and biosafety control.
Collapse
Affiliation(s)
- Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Sim J, Baek MS, Lee KH, Kim DM, Byun JY, Shin YB. A highly sensitive and versatile transcription immunoassay using a DNA-encoding tandem repetitive light-up aptamer. Talanta 2020; 224:121921. [PMID: 33379122 DOI: 10.1016/j.talanta.2020.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Highly sensitive and accurate measurements of protein biomarkers are crucial for early diagnosis and disease monitoring. Here we report a versatile detection platform for sensitive detection of a protein biomarker using a tandem repeat Spinach aptamer DNA-based transcription immunoassay, which is a immunoassay combined with transcription-assisted Spinach RNA aptamer generation. We designed a DNA template encoding spa tandem repetitive Spinach sequence for enhanced generation of an RNA aptamer. The tandem repeated Spinach DNA template is consist of multiple monomeric units which is composed of T7 promoter, Spinach-2 and terminator. After in vitro transcription, the fluorescence signal from the 16R (nR, n = number of repeats) DNA template was enhanced up to ~ 15-fold compared to a single form (1R) DNA template. Using tandem repeat DNA, the proposed transcription immunoassay showed a limit of detection (LOD) of 37 aM, which is 103-fold lower than that of the conventional enzyme-linked immunosorbent assay (ELISA). The results demonstrate substantial promise for the ultrasensitive detection of various biological analytes using simple ELISA techniques. The high sensitivity and reliability of the proposed transcription immunoassay offer great promise for clinical assays.
Collapse
Affiliation(s)
- Jieun Sim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, North Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, North Korea; BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, North Korea
| | - Min-Seok Baek
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, North Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, North Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 305-764, North Korea
| | - Ju-Young Byun
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, North Korea.
| | - Yong-Beom Shin
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, North Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, North Korea; BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, North Korea.
| |
Collapse
|
23
|
Wu Y, Shi Y, Deng S, Wu C, Deng R, He G, Zhou M, Zhong K, Gao H. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chem 2020; 343:128425. [PMID: 33127221 DOI: 10.1016/j.foodchem.2020.128425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Lead pollution are critical concerns for food safety and human health. Herein, a ratiometric metal-induced G-quadruplex polymorphism was introduced to construct aptamer probes, enabling label-free and ratiometric detection of lead in tea, thus is promising for on-site detection of lead pollution. The key feature of the aptamer probe is the synergistic utilization of the dual-wavelength fluorescent signal outputs from a G-quadruplex specific dye and a DNA intercalation dye under a single-wavelength excitation, leading to a more stable and reliable recognition of Pb2+ than that of analyses based on single fluorescent reporter. The aptamer probe allowed to a mix-and-read, rapid, cost-effective detection of Pb2+ with high specificity and accuracy. Pb2+ analysis in tap water and tea exhibited good performance with recovery rates of 92.3%-109.0%. The adoption of ratiometric metal-induced G-quadruplex polymorphism would be a compelling design strategy for constructing robust aptasensor, facilitating the translation of aptamer for food safety control.
Collapse
Affiliation(s)
- Yanping Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Yachen Shi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China.
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
25
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
26
|
Tao Z, Zhou Y, Li X, Wang Z. Competitive HRP-Linked Colorimetric Aptasensor for the Detection of Fumonisin B1 in Food based on Dual Biotin-Streptavidin Interaction. BIOSENSORS 2020; 10:E31. [PMID: 32235423 PMCID: PMC7235773 DOI: 10.3390/bios10040031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Fumonisin B1 (FB1) is the most prevalent and toxic form among fumonisin homologues which are produced by fusarium species and it contaminates various types of food products, posing serious health hazards for humans and animals. In this work, a colorimetric assay for the detection of FB1 has been developed based on competitive horseradish peroxidase (HRP)-linked aptamer and dual biotin-streptavidin interaction. In short, a biotinylated aptamer of FB1 was immobilized on the microplate by biotin-streptavidin binding; the complementary strand (csDNA) of the aptamer was ligated with HRP by biotin-streptavidin binding again to form a csDNA-HRP sensing probe, competing with FB1 to bind to the aptamer. The color change can be observed after the addition of chromogenic and stop solution, thereby realizing the visual detection of FB1. Under optimal conditions, good linearity was observed within the concentration range of 0.5 to 300 ng/mL, with a detection of limit of 0.3 ng/mL. This assay is further validated by spike recovery tests towards beer and corn samples, it provides a simple, sensitive and reliable method for the screening of FB1 in food samples and may be potentially used as an alternative to conventional assays.
Collapse
Affiliation(s)
- Zui Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.T.); (Y.Z.); (X.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - You Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.T.); (Y.Z.); (X.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.T.); (Y.Z.); (X.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.T.); (Y.Z.); (X.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
28
|
Label-Free Biosensors for Laboratory-Based Diagnostics of Infections: Current Achievements and New Trends. BIOSENSORS-BASEL 2020; 10:bios10020011. [PMID: 32059538 PMCID: PMC7169461 DOI: 10.3390/bios10020011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 01/16/2023]
Abstract
Infections pose a serious global public health problem and are a major cause of premature mortality worldwide. One of the most challenging objectives faced by modern medicine is timely and accurate laboratory-based diagnostics of infectious diseases. Being a key factor of timely initiation and success of treatment, it may potentially provide reduction in incidence of a disease, as well as prevent outbreak and spread of dangerous epidemics. The traditional methods of laboratory-based diagnostics of infectious diseases are quite time- and labor-consuming, require expensive equipment and qualified personnel, which restricts their use in case of limited resources. Over the past six decades, diagnostic technologies based on lateral flow immunoassay (LFIA) have been and remain true alternatives to modern laboratory analyzers and have been successfully used to quickly detect molecular ligands in biosubstrates to diagnose many infectious diseases and septic conditions. These devices are considered as simplified formats of modern biosensors. Recent advances in the development of label-free biosensor technologies have made them promising diagnostic tools that combine rapid pathogen indication, simplicity, user-friendliness, operational efficiency, accuracy, and cost effectiveness, with a trend towards creation of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up a broad range of applications of these analytical systems in clinical practice immediately at the site of medical care (point-of-care concept, POC). A great variety of modern nanoarchitectonics of biosensors are based on the use of a broad range of analytical and constructive strategies and identification of various regulatory and functional molecular markers associated with infectious bacterial pathogens. Resolution of the existing biosensing issues will provide rapid development of diagnostic biotechnologies.
Collapse
|
29
|
Self-assembly of DNA-templated copper nanoclusters and carbon dots for ratiometric fluorometric and visual determination of arginine and acetaminophen with a logic-gate operation. Mikrochim Acta 2020; 187:154. [DOI: 10.1007/s00604-020-4146-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/25/2020] [Indexed: 01/10/2023]
|
30
|
Yang F, Jiang XY, Liang WB, Chai YQ, Yuan R, Zhuo Y. 3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Anal Chem 2020; 92:2566-2572. [DOI: 10.1021/acs.analchem.9b04256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin-Ya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
31
|
Pan Q, Nie C, Hu Y, Yi J, Liu C, Zhang J, He M, He M, Chen T, Chu X. Aptamer-Functionalized DNA Origami for Targeted Codelivery of Antisense Oligonucleotides and Doxorubicin to Enhance Therapy in Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:400-409. [PMID: 31815420 DOI: 10.1021/acsami.9b20707] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drug resistance is a major obstacle to the efficient therapy of drug-resistant cancer. To overcome this problem, we constructed a multifunctional DNA origami-based nanocarrier for codelivery of a chemotherapeutic drug (doxorubicin, Dox) and two different antisense oligonucleotides (ASOs; B-cell lymphoma 2 (Bcl2) and P-glycoprotein (P-gp)) into drug-resistant cancer cells for enhanced therapy. To increase the targeting ability of origami, staple strands with 5'-end extended MUC1 sequences were used in the preparation of aptamer-functionalized origami carrying ASOs (Apt-origami-ASO). Dox-loaded Apt-origami-ASO (Apt-Dox-origami-ASO) was prepared by electrostatic adsorption of Dox in origami. Atomic force microscopy (AFM) images demonstrated the successful preparation of Apt-origami-ASO. In vitro studies showed that the Apt-Dox-origami-ASO (Apt-DOA) could controllably release Dox in pH 5.0 phosphate-buffered saline (PBS) buffer and release ASOs in response to glutathione. Further experiments revealed that the origami could protect ASOs against nuclease degradation in 10% FBS. Confocal imaging showed that the Apt-DOA nanocarrier could efficiently enter the Hela/adriamycin (ADR) cells and escape from lysosomes for codelivery of Dox and ASOs into the cytoplasm. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot assays testified the efficient silencing of Bcl2 and P-gp mRNA and downregulation of the corresponding protein expressions by Apt-DOA in Hela/ADR cells. Moreover, with the synergetic effect by codelivery of multi-ASOs and Dox, the anticancer assay showed that Apt-DOA could circumvent multidrug resistance and significantly enhance cancer therapy in Hela/ADR and MCF-7/ADR cells. Hence, this multifunctional origami-based codelivery nanocarrier presents a new strategy for efficient therapy of drug-resistant cancer.
Collapse
Affiliation(s)
- Qingshan Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
- College of Science , Honghe University , Mengzi 661199 , P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Jintao Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Chang Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
32
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
33
|
Li D, Yang F, Yuan R, Xiang Y. Lighting-up RNA aptamer transcription synchronization amplification for ultrasensitive and label-free imaging of microRNA in single cells. Anal Chim Acta 2019; 1102:84-90. [PMID: 32043999 DOI: 10.1016/j.aca.2019.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
Sensitive imaging of intracellular microRNAs (miRNAs) in cells is of great significance in clinical diagnoses and disease treatments, and it remains a major challenge to achieve this goal. Herein, we report a new in situ rolling circle transcription synchronization machinery (RCTsm) of lighting-up RNA aptamer strategy for highly sensitive imaging and selective differentiation of miRNA expression levels in cells. Such a RCTsm approach utilizes a DNA promoter to recycle the target miRNAs to trigger the initiation of multiple RCT process for the yield of many lighting-up RNA aptamers. The malachite green dye further binds these aptamers to show significantly enhanced fluorescence for completely label-free detection of the target miRNAs with a high sensitivity in vitro with a low femtomolar detection limit. More importantly, sensitive detection of under-expressed miRNAs in cells and distinct differentiation of the miRNA expression variations in different cells can also be realized with this RCTsm approach in a washing-free format, making it a versatile and useful tool for imaging trace miRNAs in single cells with the great potential for early cancer diagnosis as well as biomedical research.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
34
|
Song F, Deng R, Liu H, Wang A, Ma C, Wei Y, Cui X, Wan Y, Li J. Trypsin-Amplified Aerolysin Nanopore Amplified Sandwich Assay for Attomolar Nucleic Acid and Single Bacteria Detection. Anal Chem 2019; 91:14043-14048. [PMID: 31577421 DOI: 10.1021/acs.analchem.9b03717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanopore technology is promising for the next-generation of nucleic acid-based diagnosis. However, sequence reservation could still be hardly achieved in low-concentration. Herein, we propose a trypsin-activated catalysis reaction for amplified detection, which substantially improves the sensitivity of nanopore technique. The proposed trypsin-amplified nanopore amplified sandwich assay (tNASA) could contribute to a sensitivity approximately 100 000 times higher based on nucleic acid probe design. Remarkably, tNASA is capable of attomolar nucleic acid and single cell detection by using a miniaturized current amplifier without alignment algorithm. Also it allows 10 pathogenic species in serum to be accurately and robustly profiled, thus be utilized for the diagnosis of infectious diseases. tNASA may evolve the construction of nanopore techniques for nucleic acid detection and would facilitate its translation for pocket diagnosis and precision medicine.
Collapse
Affiliation(s)
- Fengge Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China.,College of Light Industry, Textile and Food Engineering and Healthy Food Evaluation Research Centre , Sichuan University , Chengdu 610065 , China
| | - Hong Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
| | - Aimin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
| | - Yangdao Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
| | - Xiaojian Cui
- National Marine Data & Information Service , Tianjin 300170 , China
| | - Yi Wan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Marine College, State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China.,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
35
|
Yang H, Zhao W, Deng S, Zhang K, Zhao Z, Deng R, He Q, Li J. Intrinsic Conformation-Induced Fluorescence Resonance Energy Transfer Aptasensor. ACS APPLIED BIO MATERIALS 2019; 3:2553-2559. [DOI: 10.1021/acsabm.9b00738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenyue Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|