1
|
de Oliveira Martins E, Weber G. Nearest-neighbour parametrization of DNA single, double and triple mismatches at low sodium concentration. Biophys Chem 2024; 306:107156. [PMID: 38157701 DOI: 10.1016/j.bpc.2023.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
DNA mismatches, that is, base pairs different from the canonical AT and CG, are involved in numerous biological processes and can be a problem for technological applications such as PCR amplification. The nearest-neighbour (NN) model is the standard approach for predicting melting temperatures and is used in methods of secondary structure predictions and modelling of hybridization kinetics. However, despite its biological and technological importance, existing NN parameters that include DNA mismatches are incomplete, and those available were obtained from a limited set of melting temperature at high sodium concentration. To our knowledge, there is currently no NN set of parameters for up to three mismatches covering all configurations at low sodium concentrations. Here, we are applying the NN model to a large set of 4096 published melting temperatures, covering all combinations of single, double and triple mismatches. Dealing with such a large set of temperature is challenging in several ways, bringing new methodological problems. Here, optimizing a large number of 252 independent parameters has required the development of a new method where we readjust the seed parameters using the definition of the Gibbs free energy. The new parameters predict the training set within 1.1 °C and the validation set to 2.7 °C.
Collapse
Affiliation(s)
- Erik de Oliveira Martins
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; Escola Politécnica, Centro Universitário Católica do Leste de Minas Gerais, 35170-056 Coronel Fabriciano, MG, Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Kumagai T, Kinoshita B, Hirashima S, Sugiyama H, Park S. Thiophene-Extended Fluorescent Nucleosides as Molecular Rotor-Type Fluorogenic Sensors for Biomolecular Interactions. ACS Sens 2023; 8:923-932. [PMID: 36740828 DOI: 10.1021/acssensors.2c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.
Collapse
Affiliation(s)
- Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ban Kinoshita
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Mesoscopic model confirms strong base pair metal mediated bonding for T-Hg 2+-T and weaker for C-Ag +-C. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kishimoto Y, Fujii A, Nakagawa O, Obika S. Enhanced duplex- and triplex-forming ability and enzymatic resistance of oligodeoxynucleotides modified by a tricyclic thymine derivative. Org Biomol Chem 2021; 19:8063-8074. [PMID: 34494641 DOI: 10.1039/d1ob01462e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized an artificial nucleic acid, [3-(1,2-dihydro-2-oxobenzo[b][1,8]naphthyridine)]-2'-deoxy-D-ribofuranose (OBN), with a tricyclic structure in a nucleobase as a thymidine analog. Oligodeoxynucleotides (ODNs) containing consecutive OBN displayed improved duplex-forming ability with complementary single-stranded (ss) RNA and triplex-forming ability with double-stranded DNA in comparison with ODNs composed of natural thymidine. OBN-modified ODNs also displayed enhanced enzymatic resistance compared with ODNs with natural thymidine and phosphorothioate modification, respectively, due to the structural steric hindrance of the nucleobase. The fluorescence spectra of OBN-modified ODNs showed sufficient fluorescence intensity with ssDNA and ssRNA, which is an advantageous feature for fluorescence imaging techniques of nucleic acids with longer emission wavelengths than bicyclic thymine (bT).
Collapse
Affiliation(s)
- Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Sciences and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
5
|
A Disposable Electrochemical Biosensor Based on Screen-Printed Carbon Electrodes Modified with Silver Nanowires/HPMC/Chitosan/Urease for the Detection of Mercury (II) in Water. BIOSENSORS-BASEL 2021; 11:bios11100351. [PMID: 34677307 PMCID: PMC8534075 DOI: 10.3390/bios11100351] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
This work describes the facile preparation of a disposable electrochemical biosensor for the detection of Hg(II) in water by modifying the surface of a screen-printed carbon electrode (SPCE). The surface modification consists of the immobilization of a composite layer of silver nanowires, hydroxymethyl propyl cellulose, chitosan, and urease (AgNWs/HPMC/CS/Urease). The presence of the composite was confirmed by scanning electron microscopy (SEM) and its excellent conductivity, due chiefly to the electrical properties of silver nanowires, enhanced the sensitivity of the biosensor. Under optimum conditions, the modified SPCE biosensor showed excellent performance for the detection of Hg(II) ions, with an incubation time of 10 min and a linear sensitivity range of 5–25 µM. The limit of detection (LOD) and limit of quantitation (LOQ) were observed to be 3.94 µM and 6.50 µM, respectively. In addition, the disposable and portable biosensor exhibited excellent recoveries for the detection of Hg(II) ions in commercial drinking water samples (101.62–105.26%). The results are correlated with those obtained from inductively coupled plasma optical emission spectrometry (ICP-OES), indicating that our developed sensor is a reliable method for detection of Hg(II) in real water samples. The developed sensor device is a simple, effective, portable, low cost, and user-friendly platform for real-time detection of heavy metal ions in field measurements with potential for other biomedical applications in the future.
Collapse
|
6
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
7
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
8
|
Sarkar A, Chakraborty A, Chakraborty T, Purkait S, Samanta D, Maity S, Das D. A Chemodosimetric Approach for Fluorimetric Detection of Hg 2+ Ions by Trinuclear Zn(II)/Cd(II) Schiff Base Complex: First Case of Intermediate Trapping in a Chemodosimetric Approach. Inorg Chem 2020; 59:9014-9028. [PMID: 32573221 DOI: 10.1021/acs.inorgchem.0c00857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present work discloses the application of two fluorescent zinc and cadmium complexes (1 and 2) for sensing of Hg(II) ions through a chemodosimetric approach. The ligand under consideration in this work is a N2O donor Schiff base ligand (E)-4-bromo-2-(((2-morpholinoethyl)imino)methyl)phenol (HL), which has been harnessed to generate complexes [Zn3L2(OAc)4] (1) and [Cd3L2(OAc)4] (2). X-ray single crystal diffraction studies unveil the trinuclear skeleton of complexes 1 and 2. Both complexes have been found to be highly fluorescent in nature. However, the quantum efficiency of Zn(II) complex (1) dominates over the Cd(II) analogue (2). The absorption and emission spectroscopic properties of the complexes have been investigated by density functional theory. Complexes 1 and 2 can detect Hg2+ ions selectively by fluorescence quenching, and it is noteworthy to mention that the mechanism of sensing is unique as well as interesting. In the presence of Hg2+ ions, complexes 1 and 2 are transformed to mononuclear mercuric intermediate complex (3) and finally to a trinuclear mercuric complex (4) by hydrolysis. We have successfully trapped the intermediate complex 3, and we characterized it with the aid of X-ray crystallography. Transformation of complexes 1 and 2 to intermediate complex 3 and finally to 4 has been established by UV-vis spectroscopy, fluorescence spectroscopy, ESI-MS spectroscopy, 1H NMR spectroscopy, and X-ray crystallography. The spontaneity of the above conversion is well supported by thermodynamic aspects as reflected from density functional theoretical calculations.
Collapse
Affiliation(s)
- Abani Sarkar
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Aratrika Chakraborty
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tonmoy Chakraborty
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Suranjana Purkait
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Debabrata Samanta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur 208016, India
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700 103, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Pan Z, Xu Z, Chen J, Hu L, Li H, Zhang X, Gao X, Wang M, Zhang J. Coumarin Thiourea-Based Fluorescent Turn-on Hg 2+ Probe That Can Be Utilized in a Broad pH Range 1-11. J Fluoresc 2020; 30:505-514. [PMID: 32146649 DOI: 10.1007/s10895-020-02517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
A novel coumarin-thiourea conjugate was synthesized facilely. It served as a fluorescent turn-on chemosensor for selective detection of Hg2+ ion over other common competitive metal ions including Li+, Na+, K+, Ag+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+ ions based on the Hg2+-promoted desulfurization and cyclization reactions. Addition of Hg2+ ion to the sensor solution in 2:8 EtOH/H2O induced a hypsochromic shift of the UV-Vis absorption band from 360 nm to 340 nm accompanying distinct enhancement in the absorption intensity while addition of other metal ions failed to bring about substantial change in the absorption spectra. Addition of Hg2+ to the sensor solution also caused marked increase in the fluorescence emission intensity and most common competitive metal ions did not interfere with the selective sensing of Hg2+ ion by the sensor. The detection limit of Hg2+ ion by the probe was calculated to be 1.46 × 10-7 M and the probe could be utilized for selective detection of Hg2+ ion by fluorescence turn-on mode over a broad pH range of 1-11.
Collapse
Affiliation(s)
- Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Zhenxiang Xu
- Penglai Xinguang Pigment Chemical Co., Ltd, Penglai, 265601, People's Republic of China
| | - Jie Chen
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Luping Hu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China.
| | - Xin Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Xucheng Gao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, People's Republic of China
| |
Collapse
|