1
|
Westwood MT, Omar Farah A, Wise HB, Sinfield M, Robichon C, Prindl MI, Cordes DB, Ha-Yeong Cheong P, Smith AD. Isothiourea-Catalysed Acylative Kinetic Resolution of Tertiary Pyrazolone Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407983. [PMID: 39177177 DOI: 10.1002/anie.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %). The application of this KR method to tertiary alcohols derived directly from a natural product (geraniol), alongside pharmaceutically relevant drug compounds (indomethacin, gemfibrozil and probenecid), with high efficiency (s >100) is also described. The KR process is readily amenable to scale up using bench grade solvents and reagents, with effective resolution on a 50 g (0.22 mol) scale demonstrated. The key structural motif leading to excellent selectivity in this KR process has been probed through computation, with an NC=O⋅⋅⋅isothiouronium interaction from substrate to acylated catalyst observed within the favoured transition state. Similarly, the effect of C(5)-aryl substitution that leads to reduced experimental selectivity is probed, with a competitive π-isothiouronium interaction identified as leading to reduced selectivity.
Collapse
Affiliation(s)
- Matthew T Westwood
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Henry B Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Mike Sinfield
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Camille Robichon
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Martha I Prindl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeong Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
2
|
Wang Y, Wang Y, Du X, Zheng K, Zhai S, Bai S, Fang L, Zhang T. Catalytic Enantioselective Propargylation of Pyrazolones by Amide-Based Phase-Transfer Catalysts. Org Lett 2024; 26:7318-7323. [PMID: 39185762 DOI: 10.1021/acs.orglett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this paper, we developed a highly enantioselective alkylation of 4-substituted pyrazolones catalyzed by phase-transfer catalysis. Cheap halohydrocarbons were employed as electrophilic alkylationg agents, and propargyl, allyl, and benzyl products with all-carbon quaternary stereocenters were afforded with excellent enantioselectivities and good yields. We found that the unique structures of the catalyst (hydrogen bond donors of the C-9 hydroxyl group and amide group, the triphenyl at the NH-position) were important for good enantioselectivity. Furthermore, chiral propargyl products could be easily connected to azide molecules by click cycloaddition, which offers unique opportunities to obtain structurally diverse chiral pyrazolones.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kaiting Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuman Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
3
|
Gao S, Sun X, Peng S, Zha Z, Sun Q, Wang Z. A copper-catalyzed asymmetric Friedel-Crafts hydroxyalkylation of pyrazole-4,5-diones with 5-aminoisoxazoles. Org Biomol Chem 2024; 22:3391-3395. [PMID: 38619100 DOI: 10.1039/d4ob00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
An asymmetric Friedel-Crafts hydroxyalkylation reaction of 5-aminoisoxazoles with pyrazole-4,5-diones was developed under the catalysis of 5% chiral copper complexes. This reaction exhibits functional group tolerance and excellent enantioselectivity. Moreover, the reaction can be scaled up and its mechanism was studied.
Collapse
Affiliation(s)
- Siyu Gao
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Xiang Sun
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Sijie Peng
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Zhenggen Zha
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qi Sun
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Zhiyong Wang
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Chai Y, Chen P, Wu R, Zhou J, Ou J, Min Y, Wang H, Zhang D, Zhou H, Liu Y, Zhou J. Enantioselective Alkynylation of Pyrazole-4,5-diones with Terminal Alkynes Catalyzed by Copper/PyBisulidine. J Org Chem 2023; 88:13645-13654. [PMID: 37681260 DOI: 10.1021/acs.joc.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A copper/PyBisulidine-catalyzed enantioselective alkynylation of electrophilic pyrazole-4,5-dione with terminal alkynes has been developed. Chiral tertiary propargylic alcohols bearing the pyrazolone motif were prepared with yields (up to 99%) and enantioselectivities (up to 99% ee). The prominent feature of this protocol includes its mild reaction conditions and good stereoselectivities. The nonlinear effect study showed that the catalytically active specie was a monomeric catalyst and that the excess copper activated the alkynes through the π-system.
Collapse
Affiliation(s)
- Yu Chai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruoran Wu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junyu Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianhua Ou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Min
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Haoting Wang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Liu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
6
|
Zhang Y, Lv C, Hu C, Su Z. Mechanistic Study of Asymmetric Alkynylation of Isatin-Derived Ketimine Mediated by a Copper/Guanidine Catalyst. J Org Chem 2022; 87:11693-11707. [PMID: 36001814 DOI: 10.1021/acs.joc.2c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we performed a mechanistic study of asymmetric alkynylation of isatin-derived N-Boc ketimine that was first reported by Feng, Liu, and co-workers (Chem. Commun. 2018, 54, 678-681). Guanidine-amide promoted the formation of highly nucleophilic copper acetylene species by abstracting the terminal proton of phenylacetylene with an imine moiety. The guanidinium salt-Cu(I) complex was the most active species in the addition of the C═N bond, in which copper acetylene coordinated to the O atom of the amide moiety, and the isatin-derived ketimine substrate was activated by hydrogen bonding as well as tert-butoxycarbonyl···Cu(I) coordination. Due to weak interaction between Cu(I) and the Ph group in the amide of guanidine, as well as the repulsion between the tert-butyl group in ketimine and the cyclohexyl group in guanidine, the copper acetylene preferred to attack isatin-derived ketimine from the re-face, leading to the S-configuration product with excellent stereoselectivity. The affinity of the counterion for the Cu(I) center in the copper salt affected the deprotonation of phenylacetylene and the formation of guanidinium salt active species. In contrast to CuBr and CuCl, the combination of CuI with aniline-derived guanidine-amide exhibited high catalytic activity and a chiral induction effect, contributing to a high turnover frequency (9.70 × 10-4 s-1) in catalysis and ee%.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
7
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Li ZF, He HJ, Wang RH, Zhou LY, Xiao YC, Chen FE. Copper-catalyzed asymmetric alkynylation of pyrazole-4,5-diones using chloramphenicol base-derived hydroxyl oxazoline ligands. Org Chem Front 2022. [DOI: 10.1039/d2qo00213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric copper-catalyzed alkynylation reactions of pyrazole 4,5-diones in the presence of hydroxyl oxazoline ligand, which was derived from low cost, easily accessible chloramphenicol base (ANP), were achieved. The notable...
Collapse
|
9
|
Chiral Quaternary Ammoniums Derived from Dehydroabietylamine: Synthesis and Application to Alkynylation of Isatin Derivatives Catalyzed by Silver. Catalysts 2021. [DOI: 10.3390/catal11121479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abietic acid and its derivatives have broadly been used in fine chemicals and are renewable resources. Its inherent chiral rigid tricyclic phenanthrene skeleton is unique. Its utilities in asymmetric catalysis remain to be explored. A series new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were designed, and prepared by two convenient steps. Acylation of dehydroabietylamine with bromoacetyl chloride afforded amide holding bromoacetyl group in higher yields using triethyl amine as base. Subsequent quaternization reaction gave the desired amide-type chiral quaternary ammoniums. The new chiral quaternary ammoniums can be used as phase-transfer catalyst (PTC) for the transition metal-catalysed alkynylation of isatin derivatives.
Collapse
|
10
|
Lu Y, Li J, Gu W, Li N, Zha Z, Wang Z. Lewis acid-catalyzed enantioselective Friedel-Crafts reaction of pyrazole-4,5-diones with β-naphthol. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
|
12
|
Wang RH, Li YL, He HJ, Xiao YC, Chen FE. Catalytic Asymmetric Addition of Diorganozinc Reagents to Pyrazole-4,5-Diones and Indoline-2,3-Diones. Chemistry 2021; 27:4302-4306. [PMID: 33453077 DOI: 10.1002/chem.202005081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Indexed: 12/11/2022]
Abstract
The catalytic enantioselective diorganozinc additions to cyclic diketones including pyrazolin-4,5-diones and isatins have been developed. In the presence of morpholine-containing chiral amino alcohol ligand, the corresponding chiral cyclic tertiary alcohols were produced in good to excellent yields (up to 97 %) and enantioselectivities (up to 95 % ee). The notable feature of this protocol includes its mild reaction conditions, Lewis acid additives free and broad functional group tolerance.
Collapse
Affiliation(s)
- Rong-Hui Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ya-Ling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Hong-Jiao He
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.,Shanghai Engineering Center of, Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, P. R. China
| |
Collapse
|
13
|
Prieto E, Infante R, Nieto J, Andrés C. Dimethylzinc-mediated enantioselective addition of terminal alkynes to 1,2-diketones using perhydro-1,3-benzoxazines as ligands. Org Biomol Chem 2021; 19:3859-3867. [PMID: 33949556 DOI: 10.1039/d1ob00249j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conformationally restricted perhydro-1,3-benzoxazine derived from (-)-8-aminomenthol behaves as a good chiral ligand in the dimethylzinc-mediated enantioselective monoaddition of aromatic and aliphatic terminal alkynes to 1,2-diketones. The corresponding α-hydroxyketones were obtained in good yields with high enantioselectivities starting from both aromatic and aliphatic 1,2-diketones. The alkynylation of unsymmetrical 1,2-diketones with electronically different substituents also proceeds with high regio- and enantioselectivity. This reaction provides a practical method to synthesize ketones bearing a chiral tertiary propargylic alcohol.
Collapse
Affiliation(s)
- Elena Prieto
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Rebeca Infante
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Javier Nieto
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | - Celia Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| |
Collapse
|
14
|
Kumar K, Singh B, Hore S, Singh RP. Catalytic enantioselective synthesis of chiral 4-hydroxy 4′-substituted pyrazolones by the vinylogous aldol reaction of pyrazole-4,5-diones with 3-alkylidene-2-oxindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, a bifunctional quinine-derived benzamide catalyzed direct enantioselective vinylogous aldol reaction between 3-alkylidene-2-oxindoles and pyrazole-4,5-diones has been developed.
Collapse
Affiliation(s)
- Krishna Kumar
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Bhuvnesh Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Soumyadip Hore
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| | - Ravi P Singh
- Department of Chemistry
- Indian Institute of Technology
- Delhi, Hauz Khas
- New Delhi-110016
- India
| |
Collapse
|
15
|
Jiang D, Tang P, Tan Q, Yang Z, He L, Zhang M. Enantioselective Alkynylation of Isatins: A Combination of Metal Catalysis and Organocatalysis. Chemistry 2020; 26:15830-15834. [PMID: 32761674 DOI: 10.1002/chem.202003118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Pei Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 P. R. China
| |
Collapse
|
16
|
Pedro JR, Vila C, Carceller-Ferrer L, Blay G. Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPyrazolone [2,4-dihydro-3H-pyrazol-4-one] represents one of the most important five-membered nitrogen heterocycles which is present in numerous pharmaceutical drugs and molecules with biological activity. Recently, many catalytic methodologies for the asymmetric synthesis of chiral pyrazolones have been established with great success, specially, for the synthesis of pyrazolones bearing a tetrasubstituted stereocenter at C-4. This review summarizes these excellent research studies since 2018, including representative examples and some mechanistic pathways explaining the observed stereochemistry.1 Introduction2 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Full Carbon Tetrasubstituted Stereocenter at C-43 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Quaternary Carbon Stereocenter at C-4 bearing a Heteroatom4 Catalytic Enantioselective Synthesis of Chiral Spiropyrazolones5 Conclusion
Collapse
|
17
|
Chen Q, Luo M, Guo F, Liang K, Zhou F, Gao G. An Addition of Terminal Alkynes to Phthalazin‐2‐Ium Bromide Catalyzed by Copper. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qian Chen
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Mingjian Luo
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Fang Guo
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Kun Liang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical EngineeringSouthwest Forestry University Kunming 650224 People's Republic of China
| | - Guolin Gao
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 People's Republic of China
| |
Collapse
|
18
|
Chen JF, Li C. Cobalt/Bisoxazolinephosphine-Catalyzed Asymmetric Alkynylation of Isatins. Org Lett 2020; 22:4686-4691. [DOI: 10.1021/acs.orglett.0c01486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Blay G, Castilla A, Sanz D, Sanz-Marco A, Vila C, Muñoz MC, Pedro JR. Enantioselective zinc-mediated conjugate alkynylation of saccharin-derived 1- aza-butadienes. Chem Commun (Camb) 2020; 56:9461-9464. [DOI: 10.1039/d0cc04221h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diethylzinc and a bis(hydroxyl)malonamide ligand allow the first conjugate alkynylation of α,β-unsaturated imines. Excellent enatioselectivities are obtained with aliphatic alkynes.
Collapse
Affiliation(s)
- Gonzalo Blay
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Alvaro Castilla
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - David Sanz
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Amparo Sanz-Marco
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Carlos Vila
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada
- Universitat Politècnica de València
- E-46022 València
- Spain
| | - José R. Pedro
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| |
Collapse
|