1
|
Zhang Y, Zhao Q, Danil B, Xiao W, Yang X. Oxygen-Vacancy-Induced Formation of Pt-Based Intermetallics on MXene with Strong Metal-Support Interactions for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400198. [PMID: 38452354 DOI: 10.1002/adma.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
The Pt-based alloys can moderate the binding energies of oxygenated species on the catalytic surface, endowing the superior catalytic performance towards oxygen reduction reaction (ORR). Nevertheless, it is still challenging to explore general methods to synthesize structurally ordered intermetallics with uniform distributions. Herein, the strong metal-support interaction is employed to facilitate the interdiffusion of Pt/M atoms by establishing a tunnel of oxygen vacancy on ultrathin Ti3C2Tx (MXene) sheets, synthesizing the ordered PtFe, PtCo, PtZn, PdFe, PdZn intermetallics loaded onto Ti3C2Tx. Furthermore, the in-situ generation of Ti-O from Ti3C2Tx could be bonded with Pt and forming Pt-O-Ti, resulting in charge redistribution through Pt-O-Ti structure. Theoretical calculations demonstrate that the valuable charge redistribution can be observed at the interface and extended even to at the distance of two nanometers from the interface, which can modulate the Pt-Pt distance, optimize Pt-O binding energy and enhance intrinsic activity towards ORR. The strong coupling interaction between PtFe and Ti3C2Tx containing the titanium oxide layer endows the high stability of the composites. This work not only presents a general synthesis strategy for intermetallics but also provides a new insight that metal-support interaction is essential for the structural evolution of intermetallics on materials with oxygen vacancies.
Collapse
Affiliation(s)
- Yu Zhang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Qin Zhao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Bukhvalov Danil
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Weiping Xiao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaofei Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
2
|
Guan J, Dong D, Khan NA, Zheng Y. Emerging Pt-based intermetallic nanoparticles for the oxygen reduction reaction. Chem Commun (Camb) 2024. [PMID: 38264768 DOI: 10.1039/d3cc05611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The advancement of highly efficient and enduring platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR) is a critical determinant to enable broad utilization of clean energy conversion technologies. Pt-based intermetallic electrocatalysts offer durability and superior ORR activity over their traditional analogues due to their definite stoichiometry, ordered and extended structures, and favourable enthalpy of formation. With the advent in new synthetic methods, Pt-based intermetallic nanoparticles as a new class of advanced electrocatalysts have been studied extensively in recent years. This review discusses the preparation principles, representative preparation methods of Pt-based intermetallics and their applications in the ORR. Our review is focused on L10 Pt-based intermetallics which have gained tremendous interest recently due to their larger surface strain and enhanced M(3d)-Pt(5d) orbital coupling, particularly in the crystallographic c-axis direction. Additionally, we discuss future research directions to further improve the efficiency of Pt-based intermetallic electrocatalysts with the intention of stimulating increased research ventures in this domain.
Collapse
Affiliation(s)
- Jingyu Guan
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Duo Dong
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Niaz Ali Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
| |
Collapse
|
3
|
Long D, Xie Z, Wang M, Chen S, Wei Z. A phosphate tolerant Pt-based oxygen reduction catalyst enabled by synergistic modulation of alloying and surface modification. Chem Commun (Camb) 2023; 59:14277-14280. [PMID: 37962016 DOI: 10.1039/d3cc04560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Addressing phosphoric acid poisoning of platinum-based catalysts in high-temperature fuel cells still remains a strategic and synthetic problem. Here, we synthesized a Pt3Co@MoOx-NC catalyst with a Pt3Co active core and MoOx modification on the surface, which simultaneously exhibits high ORR activity and phosphate tolerance.
Collapse
Affiliation(s)
- Daojun Long
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| | - Zhenyang Xie
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| | - Minjian Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| | - Siguo Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| |
Collapse
|
4
|
Pt-Mo/C, Pt-Fe/C and Pt-Mo-Sn/C Nanocatalysts Derived from Cluster Compounds for Proton Exchange Membrane Fuel Cells. Catalysts 2022. [DOI: 10.3390/catal12030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanosized bimetallic PtMo, PtFe and trimetallic PtMoSn catalysts deposited on highly dispersed carbon black Vulcan XC-72 were synthesized from the cluster complex compounds PtCl(P(C6H5)3)(C3H2N2(CH3)2)Mo(C5H4CH3)(CO)3, Pt(P(C6H5)3)(C3N2H2(CH3)2)Fe(CO)3(COC6H5C2C6H5), and PtCl(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2, respectively. Structural characteristics of these catalysts were studied using X-ray diffraction (XRD), microprobe energy dispersive spectroscopy (EDX), and transmission electron microscopy (TEM). The synthesized catalysts were tested in aqueous 0.5 M H2SO4 in a three-electrode electrochemical cells and in single fuel cells. Electrocatalytic activity of PtMo/C and PtFe/C in the oxygen reduction reaction (ORR) and the activity of PtMoSn/C in electrochemical oxidation of ethanol were evaluated. It was shown that specific characteristics of the synthesized catalysts are 1.5–2 times higher than those of a commercial Pt(20%)/C catalyst. The results of experiments indicate that PtFe/C, PtMo/C, and PtMoSn/C catalysts prepared from the corresponding complex precursors can be regarded as promising candidates for application in fuel cells due to their high specific activity.
Collapse
|
5
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
6
|
He S, Liu Y, Zhan H, Guan L. Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suqiong He
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Yang Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| | - Hongbing Zhan
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| |
Collapse
|
7
|
Hong W, Shen X, Wang F, Feng X, Li J, Wei Z. A bimodal-pore strategy for synthesis of Pt 3Co/C electrocatalyst toward oxygen reduction reaction. Chem Commun (Camb) 2021; 57:4327-4330. [PMID: 33913988 DOI: 10.1039/d1cc00711d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A bimodal-pore strategy was developed for preparation of the Pt3Co/C catalyst with active Pt3Co nanoparticles located around the mass transfer channels rather than inside them, which leads to ca. 29% higher mass transfer efficiency and a superior single-cell performance under an ultralow Pt loading.
Collapse
Affiliation(s)
- Wei Hong
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xinran Shen
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Fangzheng Wang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Xin Feng
- School of Materials Science and Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China
| | - Jing Li
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
8
|
Zhai C, Ming R, Chen H, Tan L, Cong N, Han J, Zhou X, Yang X, Ren Z, Zhu Y. AuIr alloy with arbitrarily adjustable lattice parameters as a highly efficient electrocatalyst for the oxygen reduction reaction. Chem Commun (Camb) 2020; 56:15028-15031. [PMID: 33188378 DOI: 10.1039/d0cc05088a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AuIr alloy nanoparticles were successfully prepared without using surfactants for the first time despite Au and Ir being immiscible according to phase diagrams. The lattice parameters of the AuIr alloy can be adjusted arbitrarily. The oxygen reduction reaction (ORR) activity of Au5Ir5 alloy is better than that of Au or Ir, and the oxygen evolution reaction (OER) activity of the Au5Ir5 alloy is as good as that of Ir in alkaline solution.
Collapse
Affiliation(s)
- Conghui Zhai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|