1
|
Kumar N, Gurawa A, Yadav A, Kashyap S. Influence of C-4 Axial/Equatorial Configuration and Neighboring Group/Remote Group Participation (NGP/RGP) Driven Conformational Evidence in Chemoselective Activation of Glycals. Org Lett 2024; 26:7072-7077. [PMID: 39116290 DOI: 10.1021/acs.orglett.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We herein reveal the possibility of the C-4 neighboring group/remote group participation (NGP/RGP) facilitating the stabilization of the anomeric center via dioxolenium intermediates in the chemoselective activation of glycal donors. We further realized that the axial/equatorial configuration of the C-4 group in the galacto- and gluco-glycal series enables diverse pathways to give direct 1,2-addition or Ferrier rearrangement, respectively. A proof-of-principle for stereoselective glycosylation was amply illustrated by employing carbohydrates, amino acids, natural products, and bioactive molecules to develop 2-deoxy-glycan analogs.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Aakanksha Gurawa
- Institut Charles Gerhardt Montpellier, Univ Montpellier, CNRS, 1919, route de Mende, 34294 Cedex 5 Montpellier, France
| | - Ankit Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur 302017, India
| |
Collapse
|
2
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
3
|
Kumar N, Yadav M, Kashyap S. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydr Res 2024; 535:108992. [PMID: 38091695 DOI: 10.1016/j.carres.2023.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
2,6-Dideoxy sugars constitute an important class of anticancer antibiotics natural products and serve as essential medicinal tools for carbohydrate-based drug discovery and vaccine development. In particular, 2-deoxy ʟ-fucose or ʟ-oliose is a rare sugar and vital structural motif of several potent antifungal and immunosuppressive bioactive molecules. Herein, we devised a reagent-controlled stereo and chemoselective activation of ʟ-fucal, enabling the distinctive glycosylation pathways to access the rare ʟ-oliose and 2,3-unsaturated ʟ-fucoside. The milder oxo-philic Bi(OTf)3 catalyst induced the direct 1,2-addition predominantly, whereas B(C6F5)3 promoted the allylic Ferrier-rearrangement of the enol-ether moiety in ʟ-fucal glycal donor, distinguishing the competitive mechanisms. The reagent-tunable modular approach is highly advantageous, employing greener catalysts and atom-economical transformations, expensive ligand/additive-free, and probed for a diverse range of substrates comprising monosaccharides, amino-acids, bioactive natural products, and drug scaffolds embedded with susceptible or labile functionalities.
Collapse
Affiliation(s)
- Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Monika Yadav
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNITJ), Jaipur, 302017, India.
| |
Collapse
|
4
|
Zhao X, Zhang Z, Xu J, Wang N, Huang N, Yao H. Stereoselective Synthesis of O-Glycosides with Borate Acceptors. J Org Chem 2023; 88:11735-11747. [PMID: 37525574 DOI: 10.1021/acs.joc.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Borate esters have been applied widely as coupling partners in organic synthesis. However, the direct utilization of borate acceptors in O-glycosylation with glycal donors remains underexplored. Herein, we describe a novel O-glycosylation resulting in the formation of 2,3-unsaturated O-glycosides and 2-deoxy O-glycosides mediated by palladium and copper catalysis, respectively. This O-glycosylation method tolerated a broad scope of trialkyl/triaryl borates and various glycals with exclusive stereoselectivities in high yields. All the desired aliphatic/aromatic O-glycosides and 2-deoxy O-glycosides were generated successfully, without the hemiacetal byproducts and O→C rearrangement because of the nature of borate esters. The utility of this strategy was demonstrated by functionalizing the 2,3-unsaturated glycoside products to form saturated β-O-glycosides, 2,3-deoxy O-glycosides, and 2,3-epoxy O-glycosides.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhentao Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jing Xu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
5
|
Hou M, Xiang Y, Gao J, Zhang J, Wang N, Shi H, Huang N, Yao H. Stereoselective Synthesis of 2-Deoxy Glycosides via Iron Catalysis. Org Lett 2023; 25:832-837. [PMID: 36700622 DOI: 10.1021/acs.orglett.2c04379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An Fe-catalyzed 2-deoxy glycosylation method was developed from 3,4-O-carbonate glycals directly at room temperature. This novel approach enabled facile access to alkyl and aryl 2-deoxy glycosides in high yields with exclusive α-stereoselectivity, tolerating various alcohols, phenols, and glycals. The synthetic utility and advantage of this strategy have been demonstrated by the modification of six natural products and the construction of a tetrasaccharide.
Collapse
Affiliation(s)
- Mingyu Hou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Yimin Xiang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Gao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingyu Zhang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Haolin Shi
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
6
|
Fu D, Zhang S, Xu B, Peng P, Wan Q, Zeng J. Selective Reduction Leading to 3,5- cis-3-Aminosugars: Synthesis and Stereoselective Glycosylation. J Org Chem 2023; 88:727-731. [PMID: 36516836 DOI: 10.1021/acs.joc.2c02364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthesis of 3,5-cis-3-amino glycals with a cis-fused cyclic sulfamidate group has been achieved by selective reduction of sulfamidate ketimine groups. The efficient access to the structurally unique glycals allowed the subsequent divergent synthesis of various naturally occurring 3-amino-2,3,6-trideoxysugars. In addition, Lewis acid-promoted glycosylation of the glycals provided a simple solution for the stereoselective installation of O- and C-linked aglycons on the amino sugar scaffolds.
Collapse
Affiliation(s)
- Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Shuxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Bingbing Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Peng Peng
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
7
|
Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Md. Firoj Hossain
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia
| |
Collapse
|
8
|
Kumar M, Gurawa A, Kumar N, Kashyap S. Bismuth-Catalyzed Stereoselective 2-Deoxyglycosylation of Disarmed/Armed Glycal Donors. Org Lett 2022; 24:575-580. [PMID: 34995079 DOI: 10.1021/acs.orglett.1c04008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi(OTf)3 promoted direct and highly stereoselective glycosylation of "disarmed" and "armed" glycals to synthesize 2-deoxyglycosides has been reported. The tunable and solvent-controlled chemoselective activation of deactivated glycal donors distinguishing the competitive Ferrier and 1,2-addition pathways was discovered to improve substrate scope. The practical versatility of the method has been amply demonstrated with the oligosaccharide syntheses and 2-deoxyglycosylation of high-value natural products and drugs.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| |
Collapse
|
9
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Pal KB, Guo A, Das M, Lee J, Báti G, Yip BRP, Loh TP, Liu XW. Iridium-promoted deoxyglycoside synthesis: stereoselectivity and mechanistic insight. Chem Sci 2020; 12:2209-2216. [PMID: 34163986 PMCID: PMC8179265 DOI: 10.1039/d0sc06529c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities. Ir(i)-catalyzed α-selective O-glycosylation of glycals provided an access to both 2-deoxyglycosides and 2,3-unsaturated glycosides with a broad substrate scope. The underlying rationale of α-selectivity has been illustrated by the DFT study.![]()
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Jiande Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Nanyang Environment and Water Research Institute, Nanyang Technological University 1 Cleantech Loop Singapore 637141
| | - Gábor Báti
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Benjamin Rui Peng Yip
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, Northwestern Polytechnical University Xi'an 710072 China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 .,Yangtze River Delta Research Institute of Northwestern Polytechnical University Taicang Jiangsu 215400 China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371
| |
Collapse
|
11
|
Wang C, Liang H, Hang Z, Wang ZY, Xie Q, Xue W. Lewis acid/base pair as a catalytic system for α-stereoselective synthesis of 2-deoxyglycosides through the addition of alcohols to glycals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
13
|
Adonin NY, Bardin VV. Polyfluorinated arylboranes as catalysts in organic synthesis. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
15
|
Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. Core‐Shell Fe
3
O
4
@Carbon@SO
3
H: A Powerful Recyclable Catalyst for the Synthesis of α‐2‐Deoxygalactosides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Youxian Dong
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guosheng Sun
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guofang Yang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Qingbing Wang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Jianbo Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| |
Collapse
|