1
|
Yan M, Yang H, Gong Z, Zhu J, Allen C, Cheng T, Fei H. Sulfur-Tuned Main-Group Sb-N-C Catalysts for Selective 2-Electron and 4-Electron Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402963. [PMID: 38616302 DOI: 10.1002/adma.202402963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The selective oxygen reduction reaction (ORR) is important for various energy conversion processes such as the fuel cells and metal-air batteries for the 4e- pathway and hydrogen peroxide (H2O2) electrosynthesis for the 2e- pathway. However, it remains a challenge to tune the ORR selectivity of a catalyst in a controllable manner. Herein, an efficient strategy for introducing sulfur dopants to regulate the ORR selectivity of main-group Sb-N-C single-atom catalysts is reported. Significantly, Sb-N-C with the highest sulfur content follows a 2e- pathway with high H2O2 selectivity (96.8%) and remarkable mass activity (96.1 A g-1 at 0.65 V), while the sister catalyst with the lowest sulfur content directs a 4e- pathway with a half-wave potential (E1/2 = 0.89 V) that is more positive than commercial Pt/C. In addition, practical applications for these two 2e-/4e- ORR catalysts are demonstrated by bulk H2O2 electrosynthesis for the degradation of organic pollutants and a high-power zinc-air battery, respectively. Combined experimental and theoretical studies reveal that the excellent selectivity for the sulfurized Sb-N-Cs is attributed to the optimal adsorption-desorption of the ORR intermediates realized through the electronic structure modulation by the sulfur dopants.
Collapse
Affiliation(s)
- Minmin Yan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hao Yang
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhichao Gong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jiarui Zhu
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Christopher Allen
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd., Oxford, OX11 0DE, UK
| | - Tao Cheng
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huilong Fei
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
2
|
Santra S, Streibel V, Wagner LI, Cheng N, Ding P, Zhou G, Sirotti E, Kisslinger R, Rieth T, Zhang S, Sharp ID. Tuning Carbon Dioxide Reduction Reaction Selectivity of Bi Single-Atom Electrocatalysts with Controlled Coordination Environments. CHEMSUSCHEM 2024; 17:e202301452. [PMID: 38224562 DOI: 10.1002/cssc.202301452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Control over product selectivity of the electrocatalytic CO2 reduction reaction (CO2RR) is a crucial challenge for the sustainable production of carbon-based chemical feedstocks. In this regard, single-atom catalysts (SACs) are promising materials due to their tunable coordination environments, which could enable tailored catalytic activities and selectivities, as well as new insights into structure-activity relationships. However, direct evidence for selectivity control via systematic tuning of the SAC coordination environment is scarce. In this work, we have synthesized two differently coordinated Bi SACs anchored to the same host material (carbon black) and characterized their CO2RR activities and selectivities. We find that oxophilic, oxygen-coordinated Bi atoms produce HCOOH, while nitrogen-coordinated Bi atoms generate CO. Importantly, use of the same support material assured that alternation of the coordination environment is the dominant factor for controlling the CO2RR product selectivity. Overall, this work demonstrates the structure-activity relationship of Bi SACs, which can be utilized to establish control over CO2RR product distributions, and highlights the promise for engineering atomic coordination environments of SACs to tune reaction pathways.
Collapse
Affiliation(s)
- Saswati Santra
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Verena Streibel
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Laura I Wagner
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ningyan Cheng
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Pan Ding
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Guanda Zhou
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Elise Sirotti
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Ryan Kisslinger
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Tim Rieth
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Siyuan Zhang
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany
| | - Ian D Sharp
- Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany
- TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
3
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
4
|
Mustafa A, Guene Lougou B, Shuai Y, Wang Z, Ur-Rehman H, Razzaq S, Wang W, Pan R, Li F, Han L. Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO 2 reduction to CO. J Colloid Interface Sci 2024; 657:363-372. [PMID: 38043238 DOI: 10.1016/j.jcis.2023.11.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction (eCO2R) to industrially important feedstock has received great attention, but it faces different challenges. Among them, the poor CO2 mass transport due to low intrinsic CO2 solubility significantly limits the rate of reduction reactions, leading to lower catalytic performance; thereby, commercially relevant current densities can't be achieved. Moreover, the poor activity and selectivity of high-cost monometallic catalysts, including Cu, Zn, Ag, and Au, undermine the efficiency of eCO2R. Flow-through gas diffusion electrodes (FTGDE), a newly developed class of GDEs, can potentially solve the issue of poor CO2 mass transport because they directly feed the CO2 to the catalyst layer. In addition, abundant surface area, porous structure, and improved triple-phase interface make them an excellent candidate for extremely high rate eCO2R. Antimony, a low-cost and abundant metalloid, can be effectively tuned with Cu to produce useful products such as CO, formate, and C2H4 through eCO2R. Herein, a series of porous binary CuSb FTGDEs with different Sb compositions are fabricated for the electrocatalytic reduction of CO2 to CO. The results show that the catalytic performance of CuSb FTGDEs improved with increasing Sb content up to a certain threshold, beyond which it started to decrease. The CuSb FTGDE with 5.4 g of antimony demonstrated higher current density (206.4 mA/cm2) and faradaic efficiency (72.82 %) at relatively lower overpotentials. Compared to gas diffusion configuration, the poor catalytic activity and selectivity achieved by CuSb FTGDE in non-gas diffusion configuration signifies the importance of improved local CO2 concentration and improved triple-phase interface formation in GDE configuration. The several hours stable operation of CuSb FTGDEs during eCO2R demonstrates its potential for efficient electrocatalytic conversion applications.
Collapse
Affiliation(s)
- Azeem Mustafa
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Bachirou Guene Lougou
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Yong Shuai
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Zhijiang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haseeb Ur-Rehman
- Mechanical Engineering Department, University of Engineering and Technology, 47050, Taxila, Pakistan
| | - Samia Razzaq
- School of Aerospace, Mechanical and Mechatronics Engineering, University of Sydney, Sydney 2006, Australia
| | - Wei Wang
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ruming Pan
- Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Fanghua Li
- Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Han
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
5
|
Yang J, Liu X, Li Z, Xi S, Sun J, Yuan H, Liu W, Wang T, Gao Y, Wang H, Wang J, Chen JS, Wu R, Zhang Y, Wang J. Quasi-Copper-Mers Enable High-Performance Catalysis for CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303297. [PMID: 37553787 PMCID: PMC10582455 DOI: 10.1002/advs.202303297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Indexed: 08/10/2023]
Abstract
As the atmospheric carbon dioxide (CO2 ) level keeps hitting the new record, humanity is facing an ever-daunting challenge to efficiently mitigate CO2 from the atmosphere. Though electrochemical CO2 reduction presents a promising pathway to convert CO2 to valuable fuels and chemicals, the general lack of suitable electrocatalysts with high activity and selectivity severely constrains this approach. Herein, a novel class of electrocatalysts is investigated, the quasi-copper-mers, in which the CuN4 rather than Cu atom itself serve as the basic building block. The respective quasi-copper-monomers, -dimers, and -trimers hosted in a graphene-like substrate are first synthesized and then performed both experimental characterization and density functional theory (DFT) calculations to examine their atomic structures, evaluate their electrocatalytical performance and understand their underlying mechanisms. The experimental results show that the quasi-copper-trimers not only outperform the quasi-copper-dimer and quasi-copper-monomer when catalyzing CO2 to CO, it also shows a superior selectivity against the competing hydrogen evolution reaction (HER). The DFT calculations not only support the experimental observations, but also reveal the volcano curve and the physical origin for the qausi-copper-trimer superiority. The present work thus presents a new strategy in the design of high-performance electrocatalysts with high activity and selectivity.
Collapse
Affiliation(s)
- Jing Yang
- Institute of High Performance Computing (IHPC)Agency for Science, Technology and Research (A*STAR)1 Fusionopolis Way, #16‐16 ConnexisSingapore138632Singapore
| | - Ximeng Liu
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Zhao Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Shibo Xi
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Jianguo Sun
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Hao Yuan
- Institute of High Performance Computing (IHPC)Agency for Science, Technology and Research (A*STAR)1 Fusionopolis Way, #16‐16 ConnexisSingapore138632Singapore
| | - Weihao Liu
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Tuo Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Yulin Gao
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Haimei Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
| | - Junjie Wang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Jun Song Chen
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Rui Wu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yong‐Wei Zhang
- Institute of High Performance Computing (IHPC)Agency for Science, Technology and Research (A*STAR)1 Fusionopolis Way, #16‐16 ConnexisSingapore138632Singapore
| | - John Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore119077Singapore
- National University of Singapore (NUS) Research Institute (Chongqing)Chongqing Liang Jiang New AreaChongqing401120China
| |
Collapse
|
6
|
Tan X, Zhuang Z, Zhang Y, Sun K, Chen C. Rational design of atomic site catalysts for electrochemical CO 2 reduction. Chem Commun (Camb) 2023; 59:2682-2696. [PMID: 36749619 DOI: 10.1039/d2cc06503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Renewable-energy-powered electrochemical CO2 reduction (ECR) is a promising way of transforming CO2 to value-added products and achieving sustainable carbon recycling. By virtue of the extremely high exposure rate of active sites and excellent catalytic performance, atomic site catalysts (ASCs), including single-atomic site catalysts and diatomic site catalysts, have attracted considerable attention. In this feature article, we focus on the rational design strategies of ASCs developed in recent years for the ECR reaction. The influence of these strategies on the activity and selectivity of ASCs for ECR is further discussed in terms of electronic regulation, synergistic activation, microenvironmental regulation and tandem catalytic system construction. Finally, the challenges and future directions are indicated. We hope that this feature article will be helpful in the development of novel ASCs for ECR.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zewen Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Kaian Sun
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Yan L, Wu Z, Li C, Wang J. Sb-doped SnS2 Nanosheets Enhance Electrochemical Reduction of Carbon dioxide to Formate. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Sun Y, Liu F, Wang X, Lu K, Liu X, Huang Y, Yu F, Chen Y. Highly selective CO 2 electroreduction to CO by the synergy between Ni-N-C and encapsulated Ni nanoparticles. Dalton Trans 2023; 52:928-935. [PMID: 36594627 DOI: 10.1039/d2dt03680k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Efficient catalysts are highly desirable for the selective electrochemical CO2 reduction reaction (CO2RR). Ni single-atom catalysts are known as promising CO2RR catalysts, while Ni NPs are expected to catalyze the competing HER. In this work, we have modified the Ni NPs by encapsulating them into porous Ni-N-C nanosheets (Ni@Ni-N-C), to boost the synergy between Ni NPs and dispersed Ni-N species towards CO2RR. The CO faradaic efficiency (FECO) reached 96.4% at -0.9 V and retained over 90% in a wide potential window. More importantly, FECO values of over 94% have been obtained from -50 to -170 mA cm-2 with a peak FECO of 99% in a flow cell. Our work demonstrates that the surface modification of Ni NPs can inhibit the unexpected HER and activate the surface sites, offering a practical design strategy for CO2RR catalysts.
Collapse
Affiliation(s)
- Yidan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Fang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Xuerong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Kangkang Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Xiaojing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Yan Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Fengjiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| |
Collapse
|
9
|
Jang HJ, Maeng JY, Kim YJ, Yoon I, Myung CW, Rhee CK, Sohn Y. Electrocatalytic CO2 reduction reaction over group 15 bismuth and antimony film electrodes: What makes difference? J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Jiang Y, Sung Y, Choi C, Joo Bang G, Hong S, Tan X, Wu T, Soo Y, Xiong P, Meng‐Jung LI M, Hao L, Jung Y, Sun Z. Single‐Atom Molybdenum‐N
3
Sites for Selective Hydrogenation of CO
2
to CO. Angew Chem Int Ed Engl 2022; 61:e202203836. [DOI: 10.1002/anie.202203836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yiqiang Jiang
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Yunjin Sung
- Department of Chemical and Biomolecular Engineering (BK21 four) Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Changhyeok Choi
- Department of Chemical and Biomolecular Engineering (BK21 four) Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Gi Joo Bang
- Department of Chemical and Biomolecular Engineering (BK21 four) Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Song Hong
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Xinyi Tan
- School of Chemical Engineering and the Environment Beijing Institute of Technology Beijing 100081 China
| | - Tai‐Sing Wu
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Yun‐Liang Soo
- Department of Physics National Tsing Hua University Hsinchu 30013 Taiwan
| | - Pei Xiong
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
| | - Molly Meng‐Jung LI
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong China
| | - Leiduan Hao
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering (BK21 four) Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
11
|
Jiang Y, Sung Y, Choi C, Bang GJ, Hong S, Tan X, Wu TS, Soo YL, Xiong P, LI MMJ, Hao L, Jung Y, Sun Z. Single‐Atom Molybdenum–N3 Sites for Selective Hydrogenation of CO2 to CO. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yiqiang Jiang
- Beijing University of Chemical Technology College of Chemical Engineering Department of Materials and Chemical Engineering CHINA
| | - Yunjin Sung
- Korea Advanced Institute of Science and Technology Department of Chemical and Biomolecular Engineering KOREA, REPUBLIC OF
| | - Changhyeok Choi
- Korea Advanced Institute of Science and Technology Department of Chemical and Biomolecular Engineering KOREA, REPUBLIC OF
| | - Gi Joo Bang
- Korea Advanced Institute of Science and Technology Department of Chemical and Biomolecular Engineering KOREA, REPUBLIC OF
| | - Song Hong
- Beijing University of Chemical Technology College of Chemical Engineering Department of Materials and Chemical Engineering Beijing Third Ring Road, Chaoyang District, Beijing 100029 Beijing CHINA
| | - Xinyi Tan
- Beijing Institute of Technology School of Chemical Engineering and the Environment CHINA
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center Department of Physics TAIWAN
| | - Yun-Liang Soo
- National Tsing Hua University Department of Physics TAIWAN
| | - Pei Xiong
- The Hong Kong Polytechnic University Department of Applied Physics CHINA
| | - Molly Meng-Jung LI
- The Hong Kong Polytechnic University Department of Applied Physics CHINA
| | - Leiduan Hao
- Beijing University of Chemical Technology College of Chemical Engineering Department of Materials and Chemical Engineering CHINA
| | - Yousung Jung
- Korea Advanced Institute of Science and Technology Department of Chemical and Biomolecular Engineering KOREA, REPUBLIC OF
| | - Zhenyu Sun
- Beijing University of Chemical Technology Department of Chemical Engineering North Third Ring Road 15, Chaoyang District, Beijing, China 100029 Beijing CHINA
| |
Collapse
|
12
|
|
13
|
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Darayen J, Chailapakul O, Praserthdam P, Panpranot J, Tungasmita D, Boonyongmaneerat Y. Advances in the Key Metal‐Based Catalysts for Efficient Electrochemical Conversion of CO
2. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jidsucha Darayen
- Chulalongkorn University Nanoscience and Technology Interdisciplinary Program Graduate School Phayathai road 10330 Bangkok Thailand
| | - Orawon Chailapakul
- Chulalongkorn University Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE) Phayathai road 10330 Bangkok Thailand
- Chulalongkorn University Green Chemistry for Fine Chemical Productions STAR Department of Chemistry, Faculty of Science Phayathai road 10330 Bangkok Thailand
| | - Piyasan Praserthdam
- Chulalongkorn University Department of Chemical Engineering Phayathai road 10330 Bangkok Thailand
- Chulalongkorn University Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC) Phayathai road 10330 Bangkok Thailand
| | - Joongjai Panpranot
- Chulalongkorn University Department of Chemical Engineering Phayathai road 10330 Bangkok Thailand
- Chulalongkorn University Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC) Phayathai road 10330 Bangkok Thailand
| | - Duangamol N. Tungasmita
- Chulalongkorn University Green Chemistry for Fine Chemical Productions STAR Department of Chemistry, Faculty of Science Phayathai road 10330 Bangkok Thailand
| | - Yuttanant Boonyongmaneerat
- Chulalongkorn University Surface Coatings Technology for Metals and Materials Research Unit Metallurgy and Materials Science Research Institute Phayathai road 10330 Bangkok Thailand
| |
Collapse
|
15
|
Wang L, Li X, Hao L, Hong S, Robertson AW, Sun Z. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemicgal CO2 reduction to ethylene. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhang Y, Zhang H, Xie S, Hou Z, Xu T, Shang Y, Yan Z. Highly dispersed Cu nanoparticles on ceria for enhanced ethylene selectivity during electrochemical reduction of CO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03295c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong interaction between Cu and CeO2 contributes to forming highly effective active sites for electroreduction of CO2 to ethylene.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hongchuan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Sai Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhangkun Hou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Tongxin Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yabing Shang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| |
Collapse
|
17
|
Wu X, Chen J, Wang M, Li X, Yang L, Li G, Li X, Lin Y, Shan L, Jiang J. High-curvature Carbon Supported Ni Single Atom with Charge Polarization for High-efficient CO2 Reduction. Chem Commun (Camb) 2022; 58:2914-2917. [DOI: 10.1039/d1cc06914d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High curvature carbon supported isolated NiN4 sites with ideal CO2 reduction reaction performance were obtained through a top-down strategy. The charge polarization induced by the axial asymmetry of carbon substrate...
Collapse
|
18
|
Li X, Li L, Wang L, Xia Q, Hao L, Zhan X, Robertson A, Sun Z. Engineering CuO-HfO2 interface toward enhanced CO2 electroreduction to C2H4. Chem Commun (Camb) 2022; 58:7412-7415. [DOI: 10.1039/d2cc01776h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report significantly enhanced electrochemical CO2 reduction (ECR) to C2H4 by tuning the interface of a metal oxide composite (CuOx/HfO2), enabling a C2H4 faradaic efficiency as high as 62.6 +...
Collapse
|
19
|
Li X, Hong S, Hao L, Sun Z. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Cheng H, Wu X, Feng M, Li X, Lei G, Fan Z, Pan D, Cui F, He G. Atomically Dispersed Ni/Cu Dual Sites for Boosting the CO 2 Reduction Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02319] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiyuan Cheng
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Manman Feng
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangping Lei
- Research Center of Shanxi Province for Solar Energy Engineering and Technology, School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Zihao Fan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dongwei Pan
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fujun Cui
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
21
|
Ayyub MM, Rao CNR. Designing electrode materials for the electrochemical reduction of carbon dioxide. MATERIALS HORIZONS 2021; 8:2420-2443. [PMID: 34870308 DOI: 10.1039/d1mh00675d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of carbon dioxide is a viable alternative for reducing fossil fuel consumption and reducing atmospheric CO2 levels. Although, a wide variety of materials have been studied for electrochemical reduction of CO2, the selective and efficient reduction of CO2 is still not accomplished. Complex reaction mechanisms and the competing hydrogen evolution reaction further complicates the efficiency of materials. An extensive understanding of reaction mechanism is hence essential in designing an ideal electrocatalyst material. Therefore, in this review article we discuss the materials explored in the last decade with focus on their catalytic mechanism and methods to enhance their catalytic activity.
Collapse
Affiliation(s)
- Mohd Monis Ayyub
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - C N R Rao
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
22
|
On the activity and stability of Sb2O3/Sb nanoparticles for the electroreduction of CO2 toward formate. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Efficient CO2 Electroreduction on Tin Modified Cuprous Oxide Synthesized via a One-Pot Microwave-Assisted Route. Catalysts 2021. [DOI: 10.3390/catal11080907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bimetallic copper-tin catalysts are considered cost-effective and suitable for large-scale electrochemical conversion of CO2 to valuable products. In this work, a class of tin (Sn) modified cuprous oxide (Cu2O) is simply synthesized through a one-pot microwave-assisted solvothermal method and thoroughly characterized by various techniques. Sn is uniformly distributed on the Cu2O crystals showing a cube-within-cube structure, and CuSn alloy phase emerges at high Sn contents. The atomic ratio of Cu to Sn is found to be crucially important for the selectivity of the CO2 reduction reaction, and a ratio of 11.6 leads to the optimal selectivity for CO. This electrode shows a high current density of 47.2 mA cm−2 for CO formation at −1.0 V vs. the reversible hydrogen electrode and also displays good CO selectivity of 80–90% in a wide potential range. In particular, considerable CO selectivity of 72–81% is achieved at relatively low overpotentials from 240 mV to 340 mV. During the long-term tests, satisfactory stability is observed for the optimal electrode in terms of both electrode activity and CO selectivity. The relatively low price, the fast and scalable synthesis, and the encouraging performance of the proposed material implies its good potential to be implemented in large-scale CO2 electrolyzers.
Collapse
|
24
|
Boosting carbon monoxide production during CO 2 reduction reaction via Cu-Sb 2O 3 interface cooperation. J Colloid Interface Sci 2021; 601:661-668. [PMID: 34091313 DOI: 10.1016/j.jcis.2021.05.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023]
Abstract
Development of multiple-component catalyst materials is a new trend in electrochemical CO2 reduction reaction (eCO2RR). A new type of metal-oxide interaction is reported here to improve carbon monoxide production via synergistic effect between the CO2-to hydrocarbon selective metal material and CO2-to hydrogen generation oxide material. Cu/Sb2O3 material originates from the hetero-structured CuO/Sb2O3 by a facile two-step hydrolysis and precipitation method, cooperative to inhibit hydrogen evolution or methane product, achieving CO Faradaic efficiency to 92% in CO2 saturated KCl electrolyte at -0.99 V with good stability. The formation of a stable *COOH intermediate by electronic and geometric effects via Cu and Sb2O3 are responsible to promote CO selectivity. Cu-Sb2O3 interface interaction also destabilizes the adsorption *H as well, an intermediate for H2 evolution. This study proposes a versatile design strategy for construction and utilization of metal-oxide interface for eCO2RR.
Collapse
|
25
|
Wang T, Cao X, Jiao L. MOFs-Derived Carbon-Based Metal Catalysts for Energy-Related Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004398. [PMID: 33458960 DOI: 10.1002/smll.202004398] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Electrochemical devices, as renewable and clean energy systems, display a great potential to meet the sustainable development in the future. However, well-designed and highly efficient electrocatalysts are the technological dilemmas that retard their practical applications. Metal-organic frameworks (MOFs) derived electrocatalysts exhibit tunable structure and intriguing activity and have received intensive investigation in recent years. In this review, the recent progress of MOFs-derived carbon-based single atoms (SAs) and metal nanoparticles (NPs) catalysts for energy-related electrocatalysis is summarized. The effects of synthesis strategy, coordination environment, morphology, and composition on the catalytic activity are highlighted. Furthermore, these SAs and metal NPs catalysts for the applications of electrocatalysis (hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction) are overviewed. Finally, some current challenges and foresighted ideas for MOFs-derived carbon-based metal electrocatalysts are presented.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), College of Chemistry Nankai University, Tianjin, 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), College of Chemistry Nankai University, Tianjin, 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), College of Chemistry Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Li H, Jiang TW, Qin X, Chen J, Ma XY, Jiang K, Zhang XG, Cai WB. Selective Reduction of CO 2 to CO on an Sb-Modified Cu Electrode: Spontaneous Fabrication and Physical Insight. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hong Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jie Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Kun Jiang
- Institute of Fuel Cells, Interdisciplinary Science Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Affiliation(s)
- Honghui Ou
- Department of Chemistry Tsinghua University Beijing China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
28
|
Carbon-based electrocatalysts for CO2 electroreduction produced via MOF, biomass, and other precursors carbonization: A review. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Ma DD, Zhu QL. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213483] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Lee WH, Ko YJ, Kim JY, Min BK, Hwang YJ, Oh HS. Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chem Commun (Camb) 2020; 56:12687-12697. [PMID: 32985636 DOI: 10.1039/d0cc04752j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single-atom catalysts (SACs) possess the potential to achieve unique catalytic properties and remarkable catalytic mass activity by utilizing low-coordination and unsaturated active sites. However, smaller particles tend to aggregate into clusters or particles owing to their high surface energy. In addition, support materials that have strong interactions with isolated metal atoms, extremely large surface areas, and electrochemical stability are required. Therefore, sufficient information about these factors is needed to synthesize and utilize SACs. Herein, we review the recent investigations and advances in SACs for the oxygen evolution reaction (OER). We present not only the structural characterization of SACs, but also in situ/operando spectroscopic techniques and computational research for SACs to understand the mechanism and reveal the origin of their excellent OER activity. Furthermore, the OER catalytic activity and stability of SACs are summarized to evaluate the current level of SACs. Currently, research on single-atoms as OER catalysts is in the infant stage for synthesis, characterization and mechanism studies. We discuss some challenges for understanding the fundamentals of SACs and enhancing the catalytic performance of SACs for industrial applications.
Collapse
Affiliation(s)
- Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
31
|
Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J. Heterogeneous Single-Atom Catalysts for Electrochemical CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001848. [PMID: 32644259 DOI: 10.1002/adma.202001848] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/27/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is of great importance to tackle the rising CO2 concentration in the atmosphere. The CO2 RR can be driven by renewable energy sources, producing precious chemicals and fuels, with the implementation of this process largely relying on the development of low-cost and efficient electrocatalysts. Recently, a range of heterogeneous and potentially low-cost single-atom catalysts (SACs) containing non-precious metals coordinated to earth-abundant elements have emerged as promising candidates for the CO2 RR. Unfortunately, the real catalytically active centers and the key factors that govern the catalytic performance of these SACs remain ambiguous. Here, this ambiguity is addressed by developing a fundamental understanding of the CO2 RR-to-CO process on SACs, as CO accounts for the major product from CO2 RR on SACs. The reaction mechanism, the rate-determining steps, and the key factors that control the activity and selectivity are analyzed from both experimental and theoretical studies. Then, the synthesis, characterization, and the CO2 RR performance of SACs are discussed. Finally, the challenges and future pathways are highlighted in the hope of guiding the design of the SACs to promote and understand the CO2 RR on SACs.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
32
|
Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper–antimony bimetallic alloy catalyst. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63542-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Yang L, Choi C, Hong S, Liu Z, Zhao Z, Yang M, Shen H, Robertson AW, Zhang H, Lo TWB, Jung Y, Sun Z. Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction. Chem Commun (Camb) 2020; 56:10910-10913. [DOI: 10.1039/d0cc01136c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile synthesis of single yttrium sites anchored on carbon-coated TiO2 for efficient and stable electrocatalytic N2 fixation.
Collapse
Affiliation(s)
- Lianghao Yang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Changhyeok Choi
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Song Hong
- Analysis Technology R&D Center
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhiming Liu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhenqing Zhao
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Mengmeng Yang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Huidong Shen
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | | | - Hao Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
- P. R. China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
- P. R. China
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Zhenyu Sun
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|