1
|
Luo Q, Qiu Z, Liang H, Huang F, Wei C, Cui J, Song Z, Tang Q, Liao X, Liu Z, Wang J, Gao F. Proximity hybridization induced molecular machine for signal-on electrochemical detection of α-synuclein oligomers. Talanta 2024; 271:125720. [PMID: 38309112 DOI: 10.1016/j.talanta.2024.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zhili Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Hongqu Liang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Fa Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chen Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, 221004, Xuzhou, China; Xuzhou Institute of Cardiovascular Disease, 221004, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
2
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Li J, Qin J, Du F, Meng W, Tang D, Huang Y, Tang J. Multiorbital DNA walker nanoprobe for portable photothermal detection based on H 2S etching of cubic Prussian blue. Mikrochim Acta 2023; 190:382. [PMID: 37697070 DOI: 10.1007/s00604-023-05957-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
In the developed assay, multiorbital 3D DNA walker (MO DNA walker) was applied as signal amplified protocol for enhancing the detection signal of the photothermal biosensor, which was designed for sensitive detection of miRNA based on the H2S triggered conversation of photothermal reagent. When the target molecule is present, the DNA walking strand was released and then hybridize with track strands. The landing of walking particles (WPT) on the tracking particles (TPT) promotes the relative movement of the WPT around TPT, thus releasing large amount of horseradish peroxidase (HRP) with the aid of DNAzyme. After reacting with Na2S2O3 and H2O2, multiple H2S can be generated in situ based on the catalytic ability of HRP. Meanwhile, cubic Prussian blue (CPB) was synthesized and exhibited superior photothermal response, which can be served as efficient photothermal reagent and H2S responsive acceptor. Significantly, the photothermal signal of CPB could be obviously reduced after challenged with H2S ascribed to synchronous reaction between the ferric ion (Fe3+) and H2S. The improved walking area and freedom enable significant signal amplification, enhancing the biosensor's performance. Under ideal circumstances, the proposed photothermal assay demonstrated excellent performance for determination of miRNA-21.
Collapse
Affiliation(s)
- Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Jiao Qin
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Fan Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Wenqin Meng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yunhong Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, People's Republic of China.
| |
Collapse
|
4
|
DNAzyme-driven bipedal DNA walker triggered to hybridize silver nanoparticle probes for electrochemical detection of amyloid-β oligomer. Anal Chim Acta 2023; 1246:340889. [PMID: 36764775 DOI: 10.1016/j.aca.2023.340889] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Amyloid-β oligomer has been considered as a promising molecular biomarker for the diagnosis of Alzheimer's disease due to their significant neural synapse toxicity. Therefore, it is essential to create an easy approach for the selective detection of Amyloid-β oligomer that has high sensitivity and cheap cost. In this work, we developed an innovative enzyme-free electrochemical aptasensor based on the DNAzyme-driven DNA bipedal walker tactics for sensing Amyloid-β oligomer. Bipedal DNA walkers demonstrate a wider walking region, better walking kinetics, and higher amplification effectiveness than typical DNA walkers. The Mg2+-dependent DNAzyme drove the DNA walker, and the binding-induced DNA walker can sequentially shear MBs and form MB fragment structure. Finally, the detection probes modified AgNPs hybridized with the MB fragment structure, resulting in the multiplication of AgNPs on the electrode surface. Electrochemical stripping of AgNPs was used to test the performance of the obtained electrochemical sensor. In particular, a low detection limit of 5.94 fM and a wide linear range of 0.01 pM-0.1 nM were attained. The detection of Amyloid-β oligomer in human serum was then carried out using this bipedal DNA walker biosensor, which shown good selectivity and outstanding reproducibility, indicating its usefulness in bioanalysis.
Collapse
|
5
|
Wei J, Ge K, Gong Y, Li L, Tang Q, Liao X, Zhang G, Gao F. DNAzyme-driven bipedal DNA walker for label-free and signal-on electrochemical detection of amyloid-β oligomer. Int J Biol Macromol 2023; 228:234-241. [PMID: 36566812 DOI: 10.1016/j.ijbiomac.2022.12.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As a common technique for detecting AβO, the enzyme-linked immunosorbent assay (ELISA) method is time-consuming, high in cost, and poor in stability. Therefore, it is necessary to develop a highly sensitive, method-simple and low-cost method for the selective detection of AβO. Here, we created a novel signal-on and label-free electrochemical aptamer sensor for the detection of AβO based on a DNAzyme-driven DNA bipedal walking strategy. Compared with common DNA walkers, bipedal DNA walkers exhibit larger walking areas and faster walking kinetics, and provide higher amplification efficiency. The DNAwalker is powered by an Mg2+-dependent DNAzyme, and the binding-induced DNAwalker continuously clamps the MB, unlocking several active G-quadruplex-forming sequences. These G-quadruplexes can be further combined by hemin to generate a G-quadruplex/heme complex, resulting in an amperometric signal, resulting in a broad proportional band from 0.1 pM to 1 nM and an excellent detection range of 46 fM. A bipedal DNA walker aptamer sensor can detect human serum AβO with remarkable specificity, high reproducibility and practical application value.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Kezhen Ge
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanxun Gong
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Liqing Li
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Qianli Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, 533000 Baise, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Guanqun Zhang
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Xuzhou Central Hospital, 221004 Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
6
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
DNA walker for signal amplification in living cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Hou TL, Zhu L, Zhang XL, Chai YQ, Yuan R. Multiregion Linear DNA Walker-Mediated Ultrasensitive Electrochemical Biosensor for miRNA Detection. Anal Chem 2022; 94:10524-10530. [PMID: 35822933 DOI: 10.1021/acs.analchem.2c02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, an intelligent multiregion linear DNA walker (MLDW) with a high walking rate and a high amplification efficiency was explored for ultrasensitive detection of miRNA. Significantly, amounts of functional domain could be concentrated in a long linear DNA obtained by the target miRNA-mediated rolling-circle amplification to simultaneously increase the local concentration and collision probability, resulting in an obviously improved reaction rate. Impressively, the MLDW can accomplish the reaction within 30 min, which is at least 4 times beyond that of traditional single-leg and multiple-leg DNA walkers. As a proof of concept, the high-efficiency MLDW was used to develop an electrochemical biosensing platform for ultrasensitive detection of target miRNA-21 with a low detection limit down to 36 aM. Therefore, the MLDW we designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.
Collapse
Affiliation(s)
- Tong-Lin Hou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
9
|
Zhou XM, Zhuo Y, Tu TT, Yuan R, Chai YQ. Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Anal Chem 2022; 94:8732-8739. [PMID: 35678832 DOI: 10.1021/acs.analchem.2c01171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/μL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
10
|
Tu TT, Sun Y, Lei YM, Chai YQ, Zhuo Y, Yuan R. Pyrenecarboxaldehyde encapsulated porous TiO 2 nanoreactors for monitoring cellular GSH levels. NANOSCALE 2022; 14:5751-5757. [PMID: 35348164 DOI: 10.1039/d2nr00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, ternary electrochemiluminescence (ECL) system has become a hot research topic due to its great potential for improving ECL efficiency by promoting the generation of intermediates. However, it is still a great challenge to increase the utilization rate of intermediates in a ternary ECL system. Herein, we propose a strategy to increase the utilization rate of intermediates by designing pyrenecarboxaldehyde (Pyc) encapsulated porous titania (pTiO2) nanospheres (Pyc@pTiO2) as ECL nanoreactors for an integrated ternary (luminophore/coreactant/co-reaction accelerator, Pyc/S2O82-/TiO2) ECL system construction. Specifically, pTiO2 acted as an ECL co-reaction accelerator, in which Pyc could obtain electrons from the conduction band of TiO2 to produce more SO4˙-, increasing its emissions. Simultaneously, pTiO2 could provide confined reaction spaces to effectively shorten the diffusion distance, extend the lifetime of free radicals, increase the utilization rate of intermediates and improve the efficiency of the ternary ECL system. As a proof of concept, the Pyc@pTiO2 nanoreactors-based sensing platform was successfully constructed to sensitively monitor cellular GSH levels. Overall, this work for the first time proposed an avenue to increase the utilization rate of intermediates in a ternary ECL system, which opened a new route for ECL biosensing in cell analysis applications.
Collapse
Affiliation(s)
- Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Yuan Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Yan-Mei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Liu J, Ye LY, Zhang Y, Yang H, Zhou L, Luo E, Lei J. Nonenzymatic Target-Driven DNA Nanomachine for Monitoring Malathion Contamination in Living Cells and Bioaccumulation in Foods. Anal Chem 2022; 94:5667-5673. [PMID: 35357827 DOI: 10.1021/acs.analchem.2c00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intensive applications of toxic malathion pesticides bring a vital threat to the environment and health. Hence, a credible and sensitive strategy is urgently needed for the respective detection of malathion. In this work, an aptamer-based nonenzymatic autonomous DNA walking machine was fabricated for monitoring trace malathion contamination in cells and foods. Along with the machine walking driven by malathion-triggered reaction entropy, multiple fluorescent signal outputs were thermodynamically generated for signal amplification. The proposed stable DNA nanomachine achieved satisfactory results with a detection limit of 81.9 pg L-1 for testing malathion, which could be applied to actual samples including apple juice, paddy water, and paddy soil. Furthermore, the high stability, sensitivity, and biocompatibility of the nanomachine enabled monitoring of the malathion contamination in living cells and bioaccumulation in lettuce without additional purification. Consequently, with these excellent performances, it is strongly anticipated that the DNA walking machine has tremendous potential to be extended to general platforms against pesticides to avoid malathion-contaminated agricultural production for environmental safety and human health.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Lin Yao Ye
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Zhou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Elan Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
12
|
Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta 2021; 235:122735. [PMID: 34517602 DOI: 10.1016/j.talanta.2021.122735] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Accumulative evidences have indicated that abnormal expression of microRNAs (miRNAs) is closely associated with many health disorders, making them be regarded as potentialbiomarkers for early clinical diagnosis. Therefore, it is extremely necessary to develop a highly sensitive, specific and reliable approach for miRNA analysis. Catalytic hairpin assembly (CHA) signal amplification is an enzyme-free toehold-mediated strand displacement method, exhibiting significant potential in improving the sensitivity of miRNA detection strategies. In this review, we first describe the potential of miRNAs as disease biomarkers and therapeutics, and summarize the latest advances in CHA signal amplification-based sensing strategies for miRNA monitoring. We describe the characteristics and mechanism of CHA signal amplification and classify the CHA-based miRNA sensing strategies into several categories based on the "signal conversion substance", including fluorophores, enzymes, nanomaterials, and nucleotide sequences. Sensing performance, limit of detection, merits and disadvantages of these miRNA sensing strategies are discussed. Moreover, the current challenges and prospects are also presented.
Collapse
Affiliation(s)
- Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| | - Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
| |
Collapse
|
13
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Feng C, Zhang C, Guo J, Li G, Ye B, Zou L. Novel preparation method of bipedal DNA walker based on hybridization chain reaction for ultrasensitive DNA biosensing. Anal Chim Acta 2021; 1176:338781. [PMID: 34399897 DOI: 10.1016/j.aca.2021.338781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
In this work, a novel strategy for preparation of bipedal DNA walker (BDW) based on hybridization chain reaction (HCR) with the assistance of Exonuclease III (Exo III) was proposed. Based on this strategy, an electrochemical biosensor was constructed to achieve sensitive detection of CYFRA 21-1 DNA. Firstly, target recognition and circulation were achieved through a one-step catalytic hairpin assembly (CHA) reaction. For further amplification, hybridization chain reaction (HCR) was employed to form duplex-stranded DNA (dsDNA) nanostructure in homogeneous solution. In particular, the elongated single strand of the hairpin DNA for HCR was designed as the Mg2+ DNAzyme sequence. With the assistance of Exo III, dsDNA nanostructure can be digested and transformed into large amounts of BDW. These BDW can cleave the signal probe driven by Mg2+, which was modified on the electrode surface and thus achieved "signal-off" detection of target. This BDW preparation method based on HCR with the digestion of Exo III converted one target input into large amount of BDW. Coupled with the walking cleavage of BDW, a series of cascade amplification endowed high sensitivity with this biosensor and realized ultrasensitive detection of target DNA with the detection limit as low as 3.01 aM.
Collapse
Affiliation(s)
- Changrui Feng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chi Zhang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaxin Guo
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
15
|
Fu X, Yin Y, Zhang M, Peng F, Shi Y, Liu Y, Tan Y, Zhao Z, Yin X, Song J, Ke G, Zhang XB. Size-selective DNA nanocage-based activatable CRISPR-Cas12a for sensitive and accurate detection of mature microRNA. Chem Commun (Camb) 2021; 57:3291-3294. [PMID: 33656042 DOI: 10.1039/d1cc00178g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sensitive and accurate detection of mature miRNA without the signal interference by pre-miRNAs is highly important. Herein, a size-selective DNA nanocage-based activatable CRISPR/Cas12a system was developed to achieve this goal.
Collapse
Affiliation(s)
- Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qu CY, Zhou LS, Shu LH, Huang Q. Fe II 4L 4 Tetrahedron-Assisted Three-Way Junction Probe for Multiple miRNA Detection. ACS OMEGA 2021; 6:3330-3335. [PMID: 33553950 PMCID: PMC7860230 DOI: 10.1021/acsomega.0c05798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) modulate a variety of cellular signaling pathways and play a vital role in cell-to-cell communication. The overlapped expression of a certain miRNA is commonly reported to be related to cancers. Therefore, combined detection of multiple miRNAs is of great significance for cancer diagnosis. Herein, we developed a FeII 4L4 tetrahedron-assisted three-way junction (3WJ) probe, which exhibited a higher stability than the normal 3WJ probe, for multiple miRNA detection. In this method, the simultaneous existence of miRNA-21 and miRNA-144 triggers the release of the Y3 sequence in the FeII 4L4 tetrahedron-assisted 3WJ probe, which in turn triggers subsequent CRISPR-Cas12a-assisted rolling circle amplification. Based on this, simultaneous detection of miRNA-21 and miRNA-144 was achieved. Furthermore, we also applied this method to the detection of miRNAs in clinical samples and achieved good agreement with quantitative real-time polymerase chain reaction (qRT-PCR), indicating its significant potentials in early diagnosis and treatment of cancer.
Collapse
|
17
|
Hu Y, Chu X. A CHA-based DNA stochastic walker that traverses on cell membranes. NANOSCALE 2021; 13:1596-1599. [PMID: 33427271 DOI: 10.1039/d0nr06995g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA walkers, imitating protein motors, are a class of nucleic acid nanodevice that can move along a precisely defined "track". With a promising future in materials and biotechnology, DNA walkers have gained extensive attention among researchers. Here, we introduce a catalytic hairpin assembly (CHA)-based DNA walker on cell membranes. We designed hairpin strand (H1) modified cells as tracks. Driven by DNA strand exchange, catalytic strands move on cell membranes and other hairpin strands (H2) in the solution are loaded on cells. Additionally, we also introduce a CHA-based DNA motor and use the motor for cell membrane target sensing.
Collapse
Affiliation(s)
- Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | |
Collapse
|
18
|
An integrated fluorescence biosensor for microRNA detection based on exponential amplification reaction-triggered three-dimensional bipedal DNA walkers. Anal Chim Acta 2020; 1143:157-165. [PMID: 33384113 DOI: 10.1016/j.aca.2020.11.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Sensitive and specific miRNA detection is essential for the early cancer diagnosis. In this work, we design a fluorescent microRNA biosensor based on exponential amplification reaction (EXPAR) and nicking endonuclease-powered three-dimensional (3-D) bipedal DNA walkers (BDW). Target microRNA initiates EXPAR with the help of polymerase and nicking endonuclease to generate the large number of BDW in solution. The newly generated BDW can be continuously assembled onto polystyrene microsphere track co-modified with fluorescence-labeled DNA strand. Thus, in the presence of nicking endonuclease, the walking machine is activated to produce enhanced fluorescent signal in the supernatant. Besides, we prove that BDW holds the faster walking speed than single-legged DNA walker (SDW) based on comparative study. Under optimal conditions, the proposed amplification method owns a wide linear range from 10 fM to 5 nM with a detection limit down to 5.2 fM. The reaction time of the assay takes about 70 min. The combination of enzyme-assisted EXPAR in solution and enzyme-powered BDW on particle significantly increases the signal amplification efficiency and improves the detection sensitivity. Therefore, our method has enormous potential for the application of BDW-related biosensors.
Collapse
|
19
|
Wang L, Liu P, Liu Z, Zhao K, Ye S, Liang G, Zhu JJ. Simple Tripedal DNA Walker Prepared by Target-Triggered Catalytic Hairpin Assembly for Ultrasensitive Electrochemiluminescence Detection of MicroRNA. ACS Sens 2020; 5:3584-3590. [PMID: 33170660 DOI: 10.1021/acssensors.0c01864] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In contrast to common DNA walkers, multipedal DNA walkers exhibit larger walking area and faster walking kinetics and provide increased amplification efficiency. Consequently, they have received a considerable amount of attention in biosensing. However, most of them are synthesized by immobilizing multiple DNA walking strands on the surface of Au nanoparticles, which is tedious and time-consuming. Simple preparation of multipedal DNA walkers remains a challenge. Herein, we adopted a simple enzyme-free target-triggered catalytic hairpin assembly (CHA) circuit to synthesize a tripedal DNA walker. By walking on a DNA track-functionalized electrode, a sensitive electrochemiluminescence DNA nanomachine biosensor was constructed for sensing miRNA-21. The DNA walker was powered by toehold-mediated strand displacement; the whole process did not need the assistance of enzymes, thus avoiding tedious procedures and enzyme degradation under unfavorable environmental conditions. Specifically, a superior detection limit of 4 aM and a broad linear range of 10 aM to 1 pM were achieved. This CHA-tripedal DNA walker biosensor was then applied for the detection of miRNA-21 in human serum and showed high selectivity and excellent reproducibility, demonstrating its practical application in bioanalysis. In particular, the Y-shaped tripedal DNA walker comes from the DNA circuit, which makes the approach ideally suited for biosensing of small nucleic acid targets.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Pengfei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhijun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kairen Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuying Ye
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoxi Liang
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Lv H, Chen A, Cheng W, Kong L, Zhao M, Ding S, Ju H, Cheng W. Efficient DNA Walker Guided with Well-Regulated Interfacial Tracks for Ultrasensitive Electrochemiluminescence Biosensing. Anal Chem 2020; 92:15624-15631. [DOI: 10.1021/acs.analchem.0c03893] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heye Lv
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anyi Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Pan MC, Lei YM, Chai YQ, Yuan R, Zhuo Y. In Situ Controllable Generation of Copper Nanoclusters Confined in a Poly-l-Cysteine Porous Film with Enhanced Electrochemiluminescence for Alkaline Phosphatase Detection. Anal Chem 2020; 92:13581-13587. [DOI: 10.1021/acs.analchem.0c03312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mei-Chen Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yan-Mei Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|