1
|
Tacsi K, Galata DL, Domokos A, Pusztai É, Nagy B, Stoffán GN, Nagy ZK, Pataki H. Development and integration of a continuous horizontal belt filter into drug production procedure. Int J Pharm 2024; 666:124729. [PMID: 39306206 DOI: 10.1016/j.ijpharm.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
In the pharmaceutical industry, filtration is traditionally carried out in batch mode. However, with the spread of continuous technologies, there is an increasing demand for robust continuous filtration strategies suitable for processing suspensions produced in continuous crystallizers. Accordingly, this study aimed to investigate a lab-scale horizontal conveyor belt filtration approach for pharmaceutical separation purposes for the first time. The newly developed continuous horizontal belt filter (CHBF) was tested under different systems (microcrystalline cellulose (MCC)/water, lactose/ethanol and acetylsalicylic acid (ASA)/water) and diverse conditions. Filtration was robust using a well-defined unimodal particle size distribution MCC in water system, where the residual moisture content varied within narrow limits of 45-52% independently from the process conditions. Besides, the residual moisture content highly depended on the applied solvent and particle size. It could be reduced to below 2% by processing the suspensions of either a volatile solvent (lactose in ethanol) or an aqueous slurry of a large particle size ASA. Finally, the CHBF was connected to a mixed suspension mixed product removal (MSMPR) or a plug flow crystallizer (PFC). The residual moisture content of the CHBF-filtered ASA product and operation characteristics (onset of steady-state) were evaluated in both continuous crystallizer-filter systems. The MSMPR-CHBF system operated with a longer startup period. The size of the in situ-produced crystals was of a similar order magnitude in both systems, resulting in a similar residual moisture content (around 20%). Overall, the tested continuous filter was robust, did not modify the crystal morphology in the examined experimental range, and could be effectively integrated with continuous crystallizers.
Collapse
Affiliation(s)
- Kornélia Tacsi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Éva Pusztai
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Nimród Stoffán
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
2
|
Ye Z, Che Y, Dai D, Jin D, Yang Y, Yan X, Ma X. Supramolecular Modular Assembly of Imaging-Trackable Enzymatic Nanomotors. Angew Chem Int Ed Engl 2024; 63:e202401209. [PMID: 38400604 DOI: 10.1002/anie.202401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Self-propelled micro/nanomotors (MNMs) have shown great application potential in biomedicine, sensing, environmental remediation, etc. In the past decade, various strategies or technologies have been used to prepare and functionalize MNMs. However, the current preparation strategies of the MNMs were mainly following the pre-designed methods based on specific tasks to introduce expected functional parts on the various micro/nanocarriers, which lacks a universal platform and common features, making it difficult to apply to different application scenarios. Here, we have developed a modular assembly strategy based on host-guest chemistry, which enables the on-demand construction of imaging-trackable nanomotors mounted with suitable driving and imaging modules using a universal assembly platform, according to different application scenarios. These assembled nanomotors exhibited enhanced diffusion behavior driven by enzymatic reactions. The loaded imaging functions were used to dynamically trace the swarm motion behavior of assembled nanomotors with corresponding fuel conditions both in vitro and in vivo. The modular assembly strategy endowed with host-guest interaction provides a universal approach to producing multifunctional MNMs in a facile and controllable manner, which paves the way for the future development of MNMs systems with programmable functions.
Collapse
Affiliation(s)
- Zihan Ye
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yanan Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Dihua Dai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yingwei Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
3
|
Feng Báez JP, George De la Rosa MV, Alvarado-Hernández BB, Romañach RJ, Stelzer T. Evaluation of a compact composite sensor array for concentration monitoring of solutions and suspensions via multivariate analysis. J Pharm Biomed Anal 2023; 233:115451. [PMID: 37182364 PMCID: PMC10330539 DOI: 10.1016/j.jpba.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Compact composite probes were identified as a priority to alleviate space constraints in miniaturized unit operations and pharmaceutical manufacturing platforms. Therefore, in this proof of principle study, a compact composite sensor array (CCSA) combining ultraviolet and near infrared features at four different wavelengths (280, 340, 600, 860 nm) in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), was evaluated for its capabilities to monitor in situ concentration of solutions and suspensions via multivariate analysis using partial least squares (PLS) regression models. Four model active pharmaceutical ingredients (APIs): warfarin sodium isopropanol solvate (WS), lidocaine hydrochloride monohydrate (LID), 6-mercaptopurine monohydrate (6-MP), and acetaminophen (ACM) in their aqueous solution and suspension formulation were used for the assessment. The results demonstrate that PLS models can be applied for the CCSA prototype to measure the API concentrations with similar accuracy (validation samples within the United States Pharmacopeia (USP) limits), compared to univariate CCSA models and multivariate models for an established Raman spectrometer. Specifically, the multivariate CCSA models applied to the suspensions of 6-MP and ACM demonstrate improved accuracy of 63% and 31%, respectively, compared to the univariate CCSA models [1]. On the other hand, the PLS models for the solutions WS and LID showed a reduced accuracy compared to the univariate models [1].
Collapse
Affiliation(s)
- Jean P Feng Báez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | | | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
4
|
Fisher AC, Liu W, Schick A, Ramanadham M, Chatterjee S, Brykman R, Lee SL, Kozlowski S, Boam AB, Tsinontides S, Kopcha M. An Audit of Pharmaceutical Continuous Manufacturing Regulatory Submissions and Outcomes in the US. Int J Pharm 2022; 622:121778. [DOI: 10.1016/j.ijpharm.2022.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
5
|
Capellades G, Bonsu JO, Myerson AS. Impurity incorporation in solution crystallization: diagnosis, prevention, and control. CrystEngComm 2022. [DOI: 10.1039/d1ce01721g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work highlights recent advances in the diagnosis, prevention, and control of impurity incorporation during solution crystallization.
Collapse
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Jacob O. Bonsu
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
De la Rosa MVG, Báez JPF, Romañach RJ, López-Mejías V, Stelzer T. Real-time concentration monitoring using a compact composite sensor array for in situ quality control of aqueous formulations. J Pharm Biomed Anal 2021; 206:114386. [PMID: 34607202 DOI: 10.1016/j.jpba.2021.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
Recent advancements have demonstrated the feasibility of refrigerator-sized pharmaceutical manufacturing platforms (PMPs) for integrated end-to-end manufacturing of active pharmaceutical ingredients (APIs) into formulated drug products. Unlike typical laboratory- or industrial-scale setups, PMPs present unique requirements for process analytical technology (PAT) with respect to versatility, flexibility, and physical size to fit into the PMP space constraints. In this proof of principle study, a novel compact composite sensor array (CCSA) combining ultraviolet (UV) and near infrared (NIR) features at four different wavelengths (280, 340, 600, 860 nm) with temperature measuring capability in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), were evaluated. The results indicate that the CCSA prototype is capable of measuring the solution and suspension concentrations in aqueous formulations of four model APIs (warfarin sodium isopropanol solvate, lidocaine hydrochloride monohydrate, 6-mercaptopurine monohydrate, acetaminophen) in situ and in real-time with similar accuracy as an established Raman spectrometer commonly applied for method development.
Collapse
Affiliation(s)
- Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jean P Feng Báez
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus,. Mayagüez, PR, 00681, USA
| | - Vilmalí López-Mejías
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA.
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
7
|
Patil NB, Atapalkar RS, Chavan SP, Kulkarni AA. Multi-Step Synthesis of Miltefosine: Integration of Flow Chemistry with Continuous Mechanochemistry. Chemistry 2021; 27:17695-17699. [PMID: 34697844 DOI: 10.1002/chem.202103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/09/2022]
Abstract
Herein we report for the first time, an advanced continuous flow synthesis of the blockbuster Leishmaniasis drug miltefosine from simple starting materials by a sequence involving four steps of chemical transformation including a continuous mechanochemical step. First three reaction steps were performed in simple tubular reactors in a telescopic mode, while in the last step the product precipitated from the 3rd step was used for a continuous mechanochemical synthesis of miltefosine. When compared to a typical batch protocol that takes 15 h, miltefosine was obtained in 58 % overall yield in flow synthesis mode at the laboratory scale in a total residence time 34 min at synthesis rate of 10 g/hr, which is sufficient to treat 4800 patients per day.
Collapse
Affiliation(s)
- Niteen B Patil
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ranjit S Atapalkar
- Chemical Engineering & Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhash P Chavan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol A Kulkarni
- Chemical Engineering & Process Development, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Wen K, Hu C, Wu W, Shvedova K, Born SC, Takizawa B, Mascia S. Proof-of-Concept Design of an In-Line pH Neutralization System with Coarse and Fine Adjustments for the Continuous Manufacturing of Pharmaceuticals. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Wen
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| | - Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| | - Wei Wu
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| | | | - Stephen C. Born
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| | - Bayan Takizawa
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| | - Salvatore Mascia
- CONTINUUS Pharmaceuticals, Woburn, Massachusetts 01801, United States
| |
Collapse
|
9
|
Capellades G, Neurohr C, Briggs N, Rapp K, Hammersmith G, Brancazio D, Derksen B, Myerson AS. On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Implementation and In Situ Control of Downstream Production. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Clemence Neurohr
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Naomi Briggs
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Kersten Rapp
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Gregory Hammersmith
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - David Brancazio
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Bridget Derksen
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
10
|
Hu C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J Flow Chem 2021; 11:243-263. [PMID: 34026279 PMCID: PMC8130218 DOI: 10.1007/s41981-021-00164-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed. Graphical abstract
Collapse
Affiliation(s)
- Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, MA 01801 USA
| |
Collapse
|
11
|
Johnson MD, Burcham CL, May SA, Calvin JR, McClary Groh J, Myers SS, Webster LP, Roberts JC, Reddy VR, Luciani CV, Corrigan AP, Spencer RD, Moylan R, Boyse R, Murphy JD, Stout JR. API Continuous Cooling and Antisolvent Crystallization for Kinetic Impurity Rejection in cGMP Manufacturing. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin D. Johnson
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | - Scott A. May
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Joel R. Calvin
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jennifer McClary Groh
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Steven S. Myers
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Luke P. Webster
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jeffrey C. Roberts
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Venkata Ramana Reddy
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Carla V. Luciani
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | | | - Robert Moylan
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - Raymond Boyse
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - John D. Murphy
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - James R. Stout
- D&M Continuous Solutions, LLC, Greenwood, Indiana 46113, United States
| |
Collapse
|
12
|
Domokos A, Nagy B, Szilágyi B, Marosi G, Nagy ZK. Integrated Continuous Pharmaceutical Technologies—A Review. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Domokos
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, H-1111 Budapest, Hungary
| | - György Marosi
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Budapest University of Technology and Economics, Organic Chemistry and Technology Department, H-1111 Budapest, Hungary
| |
Collapse
|
13
|
Testa CJ, Shvedova K, Hu C, Wu W, Born SC, Takizawa B, Mascia S. Heterogeneous Crystallization as a Process Intensification Technology in an Integrated Continuous Manufacturing Process for Pharmaceuticals. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher J. Testa
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Khrystyna Shvedova
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Chuntian Hu
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Wei Wu
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Stephen C. Born
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Bayan Takizawa
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Salvatore Mascia
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| |
Collapse
|
14
|
McDonald MA, Salami H, Harris PR, Lagerman CE, Yang X, Bommarius AS, Grover MA, Rousseau RW. Reactive crystallization: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00272k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive crystallization is not new, but there has been recent growth in its use as a means of improving performance and sustainability of industrial processes.
Collapse
Affiliation(s)
- Matthew A. McDonald
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Hossein Salami
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Patrick R. Harris
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Colton E. Lagerman
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Xiaochuan Yang
- Office of Pharmaceutical Quality
- Center for Drug Evaluation and Research
- U.S. Food and Drug Administration
- Silver Spring
- USA
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Martha A. Grover
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Ronald W. Rousseau
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
15
|
Testa CJ, Hu C, Shvedova K, Wu W, Sayin R, Casati F, Halkude BS, Hermant P, Shen DE, Ramnath A, Su Q, Born SC, Takizawa B, Chattopadhyay S, O’Connor TF, Yang X, Ramanujam S, Mascia S. Design and Commercialization of an End-to-End Continuous Pharmaceutical Production Process: A Pilot Plant Case Study. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher J. Testa
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Chuntian Hu
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Khrystyna Shvedova
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Wei Wu
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Ridade Sayin
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Federica Casati
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
- IMA S.p.A., Via I Maggio 14-16, Ozzano dell’Emilia, Bologna 40064, Italy
| | - Bhakti S. Halkude
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Paul Hermant
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Dongying Erin Shen
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Anjana Ramnath
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Qinglin Su
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Stephen C. Born
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | - Bayan Takizawa
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| | | | - Thomas F. O’Connor
- Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland 20993, United States
| | - Xiaochuan Yang
- Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland 20993, United States
| | - Sukumar Ramanujam
- USV Private Limited, Arvind Vithal Gandhi Chowk, BSD Marg, Station Road, Govandi East, Mumbai 400080, India
| | - Salvatore Mascia
- CONTINUUS Pharmaceuticals, 25R Olympia Ave, Woburn, Massachusetts 01801, United States
| |
Collapse
|
16
|
Içten E, Maloney AJ, Beaver MG, Shen DE, Zhu X, Graham LR, Robinson JA, Huggins S, Allian A, Hart R, Walker SD, Rolandi P, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dongying Erin Shen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Rogers L, Briggs N, Achermann R, Adamo A, Azad M, Brancazio D, Capellades G, Hammersmith G, Hart T, Imbrogno J, Kelly LP, Liang G, Neurohr C, Rapp K, Russell MG, Salz C, Thomas DA, Weimann L, Jamison TF, Myerson AS, Jensen KF. Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Shores BT, Sieg PE, Nicosia AT, Hu C, Born SC, Shvedova K, Sayin R, Testa CJ, Wu W, Takizawa B, Ramanujam S, Mascia S. Design of a Continuous Solvent Recovery System for End-to-End Integrated Continuous Manufacturing of Pharmaceuticals. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Brianna T. Shores
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Peter E. Sieg
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Ana T. Nicosia
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Chuntian Hu
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Stephen C. Born
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Khrystyna Shvedova
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Ridade Sayin
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Christopher J. Testa
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Wei Wu
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Bayan Takizawa
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| | - Sukumar Ramanujam
- USV Private Limited, Arvind Vithal Gandhi Chowk, BSD Marg, Station Road, Govandi
East, Mumbai 400 080, India
| | - Salvatore Mascia
- CONTINUUS Pharmaceuticals, 25R Olympia Avenue, Woburn, Massachusetts 01801, United States
| |
Collapse
|
19
|
Hu C, Shores BT, Derech RA, Testa CJ, Hermant P, Wu W, Shvedova K, Ramnath A, Al Ismaili LQ, Su Q, Sayin R, Born SC, Takizawa B, O'Connor TF, Yang X, Ramanujam S, Mascia S. Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00216j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The influence of PFR on crystal size distribution, reaction and crystallization yields, and supersaturation level was investigated.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wu
- CONTINUUS Pharmaceuticals
- Woburn
- USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|