1
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 PMCID: PMC11725911 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Nicole A. Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael J. Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Mahoney BJ, Goring AK, Wang Y, Dasika P, Zhou A, Grossbard E, Cascio D, Loo JA, Clubb RT. Development and atomic structure of a new fluorescence-based sensor to probe heme transfer in bacterial pathogens. J Inorg Biochem 2023; 249:112368. [PMID: 37729854 DOI: 10.1016/j.jinorgbio.2023.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Heme is the most abundant source of iron in the human body and is actively scavenged by bacterial pathogens during infections. Corynebacterium diphtheriae and other species of actinobacteria scavenge heme using cell wall associated and secreted proteins that contain Conserved Region (CR) domains. Here we report the development of a fluorescent sensor to measure heme transfer from the C-terminal CR domain within the HtaA protein (CR2) to other hemoproteins within the heme-uptake system. The sensor contains the CR2 domain inserted into the β2 to β3 turn of the Enhanced Green Fluorescent Protein (EGFP). A 2.45 Å crystal structure reveals the basis of heme binding to the CR2 domain via iron-tyrosyl coordination and shares conserved structural features with CR domains present in Corynebacterium glutamicum. The structure and small angle X-ray scattering experiments are consistent with the sensor adopting a V-shaped structure that exhibits only small fluctuations in inter-domain positioning. We demonstrate heme transfer from the sensor to the CR domains located within the HtaA or HtaB proteins in the heme-uptake system as measured by a ∼ 60% increase in sensor fluorescence and native mass spectrometry.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yueying Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Poojita Dasika
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Anqi Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Emmitt Grossbard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Kawashima K, Nagakubo T, Nomura N, Toyofuku M. Iron Delivery through Membrane Vesicles in Corynebacterium glutamicum. Microbiol Spectr 2023; 11:e0122223. [PMID: 37154718 PMCID: PMC10269601 DOI: 10.1128/spectrum.01222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Bacterial cells form and release membrane vesicles (MVs) originating from cellular membranes. In recent years, many biological functions of bacterial MVs have been identified. Here, we show that MVs derived from Corynebacterium glutamicum, a model organism for mycolic acid-containing bacteria, can mediate iron acquisition and other phylogenetically related bacteria. Lipid/protein analysis and iron quantification assay indicate that C. glutamicum MVs formed by outer mycomembrane blebbing can load ferric iron (Fe3+) as its cargo. Iron-loaded C. glutamicum MVs promoted the growth of producer bacteria in iron-limited liquid media. MVs were received by C. glutamicum cells, suggesting a direct transfer of iron to the recipient cells. Cross-feeding of C. glutamicum MVs with phylogenetically close (Mycobacterium smegmatis and Rhodococcus erythropolis) or distant (Bacillus subtilis) bacteria indicated that C. glutamicum MVs could be received by the different species tested, while iron uptake is limited to M. smegmatis and R. erythropolis. In addition, our results indicate that iron loading on MVs in C. glutamicum does not depend on membrane-associated proteins or siderophores, which is different from what has been shown in other mycobacterial species. Our findings illustrate the biological importance of MV-associated extracellular iron for C. glutamicum growth and suggest its ecological impact on selected members of microbial communities. IMPORTANCE Iron is an essential element of life. Many bacteria have developed iron acquisition systems, such as siderophores, for external iron uptake. Corynebacterium glutamicum, a soil bacterium known for its potential for industrial applications, was shown to lack the ability to produce extracellular, low-molecular-weight iron carriers, and it remains elusive how this bacterium acquires iron. Here, we demonstrated that MVs released from C. glutamicum cells could act as extracellular iron carriers that mediate iron uptake. Although MV-associated proteins or siderophores have been shown to play critical roles in MV-mediated iron uptake by other mycobacterial species, the iron delivery through C. glutamicum MVs is not dependent on these factors. Moreover, our results suggest that there is an unidentified mechanism that determines the species specificity of MV-mediated iron acquisition. Our results further demonstrated the important role of MV-associated iron.
Collapse
Affiliation(s)
- Kayuki Kawashima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Kondo HX, Kanematsu Y, Takano Y. Structure of Heme-binding Pocket in Heme Protein is Generally Rigid and can be Predicted by AlphaFold2. CHEM LETT 2022. [DOI: 10.1246/cl.220172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroko X. Kondo
- Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| | - Yusuke Kanematsu
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
- Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yu Takano
- Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima, Hiroshima 731-3194, Japan
| |
Collapse
|
5
|
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. J Inorg Biochem 2022; 230:111770. [DOI: 10.1016/j.jinorgbio.2022.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|