1
|
Yao C, Zhang G, Tao H, Li Y, Hu R, Yang Y. Three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform for cancer-related gene biosensing. Anal Chim Acta 2024; 1299:342432. [PMID: 38499419 DOI: 10.1016/j.aca.2024.342432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Guiqun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Hongling Tao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Yulong Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China.
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
2
|
Xue C, Huang H, Wang L, Liao W, Jiang H, Wu ZS. Swelling of Serum-Stable DNA Nanoparticles upon Target-Induced Conformational Rearrangement of Sensing Probes for the Signal-On Detection of Cancer-Related Genes. Anal Chem 2022; 94:2749-2756. [PMID: 35099191 DOI: 10.1021/acs.analchem.1c03598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclease-resistant assay probes are of significant importance for biochemical analysis and disease diagnosis. In this contribution, a reconfigurable lipidic moiety-attached DNA nanoparticle (LDN) is constructed from a cholesterol-conjugated multifunctional hairpin-type DNA probe (Chol-DP) by hydrophobicity-mediated self-assembly. The LDN holds high serum stability and displays a low false-positive signal even in a complex biological milieu. The hydrophobic cholesterol moiety enables the hydrophobicity-mediated assembly, while hydrophilic DNA sequence serves as a recognition element and a polymerization template. The initiator-activated strand displacement amplification (SDA) reaction can convert the hairpin-shaped probe into rigid double-stranded DNA (dsDNA), causing the conformational rearrangement-based LDN swelling that can be used to reliably and fluorescently signal the cancer-related p53 gene. The size increase and structural reconfiguration are confirmed by dynamic light scattering (DLS) analysis and confocal microscopy imaging, respectively. Target p53 is specifically detected down to 10 pM. The whole assay process involved only several simple mixing steps. Recovery test and blind test further confirm the feasibility of the use of the LDN for the detection of target DNA in a complex biological milieu, indicating a promising nanotool for biomedical applications.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hong Huang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lei Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqiang Liao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hao Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Liu JL, Ma YC, Yang T, Hu R, Yang YH. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Mikrochim Acta 2021; 188:266. [PMID: 34291388 DOI: 10.1007/s00604-021-04924-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
An ultrasensitive electrochemical sensor has been constructed for the detection of single nucleotide polymorphisms (SNPs) based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probe under enzyme-free conditions. Interestingly, the introduction of an auxiliary probe did not disturb the detection of SNP targets, but could bind more Cd-MOFs-74 signal elements to enhance the different pulse voltammetry electrochemical signal 2~3 times as compared to sensing system without auxiliary probe, which obviously improves the sensitivity of the proposed sensor. Experimental results taking p53 tumor suppressor gene as SNP model demonstrated that the proposed method can be employed to sensitively and selectively detect target p53 gene fragment with a linear response ranging from 0.01 to 30 pmol/L (detection limit of 6.3 fmol/L) under enzyme-free conditions. Utilizing this strategy, the ultrasensitive SNP electrochemical sensor is a promising tool for the determination of SNPs in biomedicine. Graphical Abstract.
Collapse
Affiliation(s)
- Jia Li Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China
| | - Yu Chan Ma
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650500, People's Republic of China.
| |
Collapse
|