1
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
2
|
Abstract
The application of biocatalysis in conquering challenging synthesis requires the constant input of new enzymes. Developing novel biocatalysts by absorbing catalysis modes from synthetic chemistry has yielded fruitful new-to-nature enzymes. Organocatalysis was originally bio-inspired and has become the third pillar of asymmetric catalysis. Transferring organocatalytic reactions back to enzyme platforms is a promising approach for biocatalyst creation. Herein, we summarize recent developments in the design of novel biocatalysts that adopt iminium catalysis, a fundamental branch in organocatalysis. By repurposing existing enzymes or constructing artificial enzymes, various biocatalysts for iminium catalysis have been created and optimized via protein engineering to promote valuable abiological transformations. Recent advances in iminium biocatalysis illustrate the power of combining chemomimetic biocatalyst design and directed evolution to generate useful new-to-nature enzymes.
Collapse
Affiliation(s)
- Guangcai Xu
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713AV GroningenThe Netherlands
| |
Collapse
|
3
|
Liu H, Li Q, Jiang S, Zhang M, Zhao D, Shan K, Li C. Exploring the underlying mechanisms on NaCl-induced reduction in digestibility of myoglobin. Food Chem 2022; 380:132183. [DOI: 10.1016/j.foodchem.2022.132183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
|
4
|
β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Paravatou-Petsotas M, Pelecanou M, Mavridis IM, Yannakopoulou K. Unsymmetrical, monocarboxyalkyl meso-arylporphyrins in the photokilling of breast cancer cells using permethyl-β-cyclodextrin as sequestrant and cell uptake modulator. Carbohydr Polym 2022; 275:118666. [PMID: 34742406 DOI: 10.1016/j.carbpol.2021.118666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-β-cyclodextrin (pMβCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMβCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
6
|
Zatsikha YV, Shamova LI, Blesener TS, Herbert DE, Nemykin VN. Rigid, yet flexible: formation of unprecedented silver MB-DIPY dimers with orthogonal chromophore geometry. Dalton Trans 2020; 49:5034-5038. [DOI: 10.1039/d0dt00927j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unprecedented for BODIPY/DIPY and aza-BODIPY/azaDIPY chemistry, MB-DIPY2Ag2 dimers with a twisted chromophore geometry were prepared and characterized by spectroscopy, X-ray crystallography, and DFT calculations.
Collapse
|