1
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
2
|
Bej S, Sarma H, Ghosh M, Banerjee P. Metal-organic frameworks/cellulose hybrids with their modern technological implementation towards water treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121278. [PMID: 36791948 DOI: 10.1016/j.envpol.2023.121278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are amongst the most attractive porous polymeric networks with appealing properties. However, their inherent fragility, powder nature, low processibility, and handling present some exceptional challenges for high-tech commercial applications. Currently, economic and environmental concerns drive the development of some bioinspired polymeric matrices containing MOFs. As an artifact, the availability of previously unattainable properties is negotiated by conjugating cellulosic materials with crystalline MOFs. Thus, multi-dimensional organic-inorganic hybrid composites are formed with high electrical, optical, mechanical, and thermal features. These MOF/cellulose hybrids, known as CelloMOFs (cellulose MOFs), have remarkable mechanical properties with tunable porosities, specific surface area and accessible active sites, making them ideal for real-world troubleshooting applications such as wastewater treatment, chemical sensing, energy storage, and so on. In this review, current state-of-the-art strategic synthesis routes for fabrication of MOF/cellulose composites with a specific focus on CelloMOFs as a potential tool for mitigation of the targeted emerging water contaminants have been done under the same umbrella, which has previously been less explored. Streamlining discussions on general properties such as raw material selection, structural analysis of cellulose, availability of surface functional groups, cellulose-metal node interactions, cellulose charging, and so on have been emphasized, as has integration with robust MOFs. A better understanding of these fundamental properties is critical because they will have a significant impact on the performance of MOF/cellulose composites in a variety of applications. Furthermore, at the end of this review, the challenges and perspectives of using CelloMOFs have been discussed in a concise manner in order to improve their practical utility rather than just concept mapping.
Collapse
Affiliation(s)
- Sourav Bej
- Surface Engineering and Tribology Division, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Hemen Sarma
- Bioremediation Technology Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Meenakshi Ghosh
- Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 6, West Bengal, India
| | - Priyabrata Banerjee
- Surface Engineering and Tribology Division, CSIR-Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur, 713209, West Bengal, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
4
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Fabrication of chitin monoliths with controllable morphology by thermally induced phase separation of chemically modified chitin. Carbohydr Polym 2022; 275:118680. [PMID: 34742410 DOI: 10.1016/j.carbpol.2021.118680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
As a natural polymer, chitin has excellent biological properties such as biodegradability and immunological, antibacterial, and wound-healing activities and has numerous applications in cosmetics, drug delivery, and pharmaceuticals. Organic polymer monoliths have also drawn significant attention, owing to their high permeability, large surface area, and high mechanical strength. They are usually applied to separation, ion exchange, catalysis, and chromatography. We have previously prepared cellulose monoliths using biopolymers; however, because chitin possesses amide groups on its side chain, it is superior to cellulose for further chemical modification and applications. However, the utilization of chitin is restricted by its insolubility in water and common organic solvents. In this study, for the first time, a monolith was prepared by chemical modification of chitin using a thermally induced phase separation (TIPS) method. First, we prepared dibutyrylchitin (DBC) as a starting polymer that is soluble in organic solvents. To prepare the monolith, DBC was dissolved completely in dimethyl sulfoxide (DMSO) while heating, and deionized water was added to the solution. It was then cooled at 20 °C to form a monolith via phase separation. The porous morphology of the DBC monolith was altered by regulating the DBC concentration, DMSO/H2O ratio, and aging temperature. The DBC monolith was converted to a chitin monolith by the alkaline hydrolysis of butyryl ester. The successful hydrolysis of butyryl ester was confirmed by the disappearance of the peak at 1735 cm-1 in the FT-IR spectra, which is related to the ester moiety of DBC. The chitin monolith has the potential to be utilized under water flow for catalysis, metal capture from wastewater, dye sorption, and drug delivery systems.
Collapse
|
7
|
Liu X, Xiao Y, Zhang Z, You Z, Li J, Ma D, Li B. Recent Progress in
Metal‐Organic
Frameworks@Cellulose Hybrids and Their Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yun Xiao
- General English Department, College of Foreign Languages Nankai University Tianjin 300071 China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Laboratory of Eco‐chemical Engineering, Ministry of Education Qingdao University of Science and Technology Qingdao 266042 China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule‐Based Material Chemistry Nankai University Tianjin 300350 China
| |
Collapse
|
8
|
Dalapati R, Nandi S, Gogoi C, Shome A, Biswas S. Metal-Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8563-8573. [PMID: 33577280 DOI: 10.1021/acsami.0c21337] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine oil spill cleanup is one of the major challenges in recent years due to its detrimental effect on our ecosystem. Hence, the development of new superhydrophobic oil absorbent materials is in high demand. The third-generation porous materials, namely metal-organic frameworks (MOFs), have drawn great attention due to their fascinating properties. In this work, a superhydrophobic MOF with UiO-66 (SH-UiO-66) topology was synthesized strategically with a new fluorinated dicarboxylate linker to absorb oil selectively from water. The fully characterized superhydrophobic MOF showed extreme water repellency with an advancing water contact angle (WCA) of 160° with a contact angle hysteresis (CAH) of 8°. The newly synthesized porous MOF (SBET = 873 m2 g-1) material with high WCA found its promising application in oil/water separation. The superhydrophobic SH-UiO-66 MOF was further used for the in-situ coating on naturally abundant cotton fiber to make a superhydrophobic MOF@cotton composite material. The MOF-coated cotton fiber composite (SH-UiO-66@CFs) showed water repellency with a WCA of 163° and a low CAH of 4°. The flexible superhydrophobic SH-UiO-66@CFs showed an oil absorption capacity more than 2500 wt % for both heavy and light oils at room temperature. The superoleophilicity of SH-UiO-66@CFs was further exploited to separate light floating oil as well as sedimentary heavy oil from water. SH-UiO-66@CFs material can also separate oil from the oil/water mixture by gravity-directed active filtration. Hence, the newly developed MOF-based composite material has high potential as an oil absorbent material for marine oil spill cleanup.
Collapse
Affiliation(s)
- Rana Dalapati
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arpita Shome
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Xie ZT, Asoh TA, Uyama H. Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123303. [PMID: 32947707 DOI: 10.1016/j.jhazmat.2020.123303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Developing high value-added products from the waste materials is highly promising from the perspective of environmental protection and resource recovery. Herein, the used cigarette filter was recycled to prepare the flow reactor via a clean and facile strategy. A continuous-flow reduction method was adopted to produce the gold nanoparticles on deacetylated cigarette filter without any extra chemical modifier, reductant or surfactant. The obtained filter was applied as a continuous-flow reactor and showed a high permeability and ultrafast flow catalytic ability. The permeability coefficient of the reactor was about 1.4 × 10-10 m2. This work provided a clean method to covert the waste cigarette filter to useful flow reactor with the relatively simple steps, and the product had a potential for the fast reduction of 4-nitrophenol and dyes including methyl blue and methylene orange.
Collapse
Affiliation(s)
- Zheng-Tian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Gong M, Yang J, Li Y, Gu J. Glutathione-responsive nanoscale MOFs for effective intracellular delivery of the anticancer drug 6-mercaptopurine. Chem Commun (Camb) 2020; 56:6448-6451. [DOI: 10.1039/d0cc02872j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A glutathione-responsive drug-delivery platform based on nanoMOFs was developed for selective cancer therapy through the introduction of disulfide bonds.
Collapse
Affiliation(s)
- Ming Gong
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yongsheng Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|