1
|
Dong C, Zhu T, Sun J, Dong X, Sun L, Gu X, Zhao C. Self-Assembled Activatable Probes to Monitor Interactive Dynamics of Intracellular Nitric Oxide and Hydrogen Sulfide. Anal Chem 2024; 96:1259-1267. [PMID: 38206997 DOI: 10.1021/acs.analchem.3c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The increasing understanding of the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) in biological actions has generated significant interest. However, comprehensive monitoring of the dynamic fluctuations of endogenous NO and H2S remains a challenge. In this study, we have designed an innovative aggregation-induced reporter SAB-NH-SC with enhanced responsiveness to H2S for visualizing the fluctuations of intracellular NO and H2S. This probe leverages the hydrophilic properties of the pyridinium salt derivative, which can rapidly self-assemble into positively charged nanoparticles under physiological conditions, avoiding the introduction of organic solvents or tedious preparations. Notably, the reporter can repeatedly cycle S-nitrosation and SNO-transnitrosation reactions when successively treated with NO and H2S. Consequently, fluorescence alternation at 751 (H2S) and 639 nm (NO) facilitates the dynamic visualization of the alternating presence of H2S and NO within cells. This dynamic and reversible probe holds immense potential for unraveling the intricate interactions between NO and H2S in a complex network of biological applications.
Collapse
Affiliation(s)
- Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Dutta A, Maiti D, Katarkar A, Sasmal M, Khatun R, Moni D, Habibullah M, Ali M. N-Nitrosation Based Fluorescence Turn-On Nitric Oxide Probe: Kinetic and Cell Imaging Studies. ACS APPLIED BIO MATERIALS 2023; 6:3266-3277. [PMID: 37556766 DOI: 10.1021/acsabm.3c00362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.g., dehydroascorbic acid and methylglyoxal etc.) and some other reactive oxygen/nitrogen species (ROS/RNS), especially with o-phenylenediamine (OPD) based fluorosensors. To avoid these limitations, NO sensors should be designed in such a way that they react spontaneously with NO to give turn-on response within the time frame of t1/2 (typically in the range of 0.1-10 s) of NO and λem in the visible wavelength along with good cell permeability to achieve biocompatibility. With these views in mind, a N-nitrosation based fluorescent sensor, NDAQ, has been developed that is highly selective to NO with ∼27-fold fluorescence enhancement at λem = 542 nm with high sensitivity (LOD = 7 ± 0.4 nM) and shorter response time, eliminating the interference of other reactive species (RCS/ROS/RNS). Furthermore, all the photophysical studies with NDAQ have been performed in 98% aqueous medium at physiological pH, indicating its good stability under physiological conditions. The kinetic assay illustrates the second-order dependency with respect to NO concentration and first-order dependency with respect to NDAQ concentration. The biological studies reveal the successful application of the probe to track both endogenous and exogenous NO in living organisms.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Debjani Maiti
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Rousunara Khatun
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Mansur Habibullah
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
3
|
Lan Y, Zhang K, Wang F, Zhang Y, Yan M, Zuo Y. Polysiloxane-based hyperbranched fluorescent probe for dynamic visualization of HClO in lysosomes and vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122527. [PMID: 36848860 DOI: 10.1016/j.saa.2023.122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
As a type of reactive oxygen species, hypochlorous acid (HClO) is associated with inducing oxidative stress in lysosomes. Once its concentration is abnormal, it may lead to lysosomal rupture and subsequent apoptosis. Meanwhile, this may provide new inspiration for cancer treatment. Therefore, it is crucial to visualize HClO in lysosomes at the biological level. So far, numerous fluorescent probes have emerged to identify HClO. However, fluorescent probes that combine low biotoxicity with lysosome-targetable properties are scarce. In this paper, hyperbranched polysiloxanes were modified by embedding perylenetetracarboxylic anhydride red fluorescent cores with naphthalimide derivative green fluorophores to synthesize novel fluorescent probe (PMEA-1). PMEA-1 was a lysosome-targetable fluorescent probe with unique dual emission, high biosafety, and good response speed. PMEA-1 exhibited excellent sensitivity and responsiveness to HClO in PBS solution and could dynamically visualize HClO fluctuations in cells and zebrafish. Simultaneously, PMEA-1 also had monitoring ability for HClO produced in the process of cellular ferroptosis. In addition, the bioimaging results indicated that PMEA-1 was capable of accumulating within the lysosomes. We anticipate that PMEA-1 will broaden the application of silicon-based fluorescent probes in the field of fluorescence imaging.
Collapse
Affiliation(s)
- Ying Lan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Fanfan Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Yafang Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
4
|
Zhang K, Lan Y, Wang F, Gou Z, Yan M, Zuo Y. Versatile Switchable Targeted Polysiloxanes for High-Resolution Visualization of Mitochondrial and Lysosomal Interactions during Ferroptosis. Anal Chem 2023; 95:6303-6311. [PMID: 37014207 DOI: 10.1021/acs.analchem.2c05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ferroptosis is an iron-dependent process that regulates cell death and is essential for maintaining normal cell and tissue survival. The explosion of reactive oxygen species characterizes ferroptosis in a significant way. Peroxynitrite (ONOO-) is one of the endogenous reactive oxygen species. Abnormal ONOO- concentrations cause damage to subcellular organelles and further interfere with organelle interactions. However, the proper conduct of organelle interactions is critical for cellular signaling and the maintenance of cellular homeostasis. Therefore, investigating the effect of ONOO- on organelle interactions during ferroptosis is a highly attractive topic. To date, it has been challenging to visualize the full range of ONOO- fluctuations in mitochondria and lysosomes during ferroptosis. In this paper, we constructed a switchable targeting polysiloxane platform. During the selective modification of NH2 groups located in the side chain, the polysiloxane platform successfully constructed fluorescent probes targeting lysosomes and mitochondria (Si-Lyso-ONOO, Si-Mito-ONOO), respectively. Real-time detection of ONOO- in lysosomes and mitochondria during ferroptosis was successfully achieved. Remarkably, the occurrence of autophagy during late ferroptosis and the interaction between mitochondria and lysosomes was observed via the differentiated responsive strategy. We expect that this switchable targeting polysiloxane functional platform will broaden the application of polymeric materials in bioimaging and provide a powerful tool for further deeper understanding of the ferroptosis process.
Collapse
Affiliation(s)
- Kun Zhang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Ying Lan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Fanfan Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
5
|
Wei N, Liang ZY, Fang WL, Guo XF, Wang H, Zhang HX. Facile synthesis of non-modified yellow emission silicon quantum dots and their visualization of hydrogen sulfide in living cells and onion tissues. J Colloid Interface Sci 2023; 642:145-153. [PMID: 37001453 DOI: 10.1016/j.jcis.2023.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Yellow fluorescent silicon quantum dots (y-SiQDs) with 22.2% fluorescence quantum yield were synthesized by a simple hydrothermal method using 3-glycidoxypropyl triethoxysilane (GOTS) and m-aminophenol. The excitation wavelength is 550 nm with an emission wavelength of 574 nm, which effectively avoids the interference of biological autofluorescence. Notably, the synthesis approach does not require any post-modification and the y-SiQDs can be directly used for hydrogen sulfide (H2S) quantification due to static quenching. It exhibits high sensitivity and excellent selectivity for H2S with a 0.2-10 μM (R2 = 0.9953) linear range and detection limit of 54 nM. y-SiQDs have excellent stability and biocompatibility and can be used for H2S imaging in living cells and onion tissues.
Collapse
|
6
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
7
|
Ruthenium(II) complex encapsulated multifunctional metal organic frameworks based electrochemiluminescence sensor for sensitive detection of hydrogen sulfide. Talanta 2022; 249:123602. [DOI: 10.1016/j.talanta.2022.123602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
|
8
|
Sun P, Chen HC, Lu S, Hai J, Guo W, Jing YH, Wang B. Simultaneous Sensing of H 2S and ATP with a Two-Photon Fluorescent Probe in Alzheimer's Disease: toward Understanding Why H 2S Regulates Glutamate-Induced ATP Dysregulation. Anal Chem 2022; 94:11573-11581. [PMID: 35943780 DOI: 10.1021/acs.analchem.2c01850] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energy deprivation and reduced levels of hydrogen sulfide (H2S) in the brain is closely associated with Alzheimer's disease (AD). However, there is currently no fluorescent probe for precise exploration of both H2S and adenosine triphosphate (ATP) to directly demonstrate their relationship and their dynamic pattern changes. Herein, we developed a two-photon fluorescent probe, named AD-3, to simultaneously image endogenous H2S and ATP from two emission channels of fluorescent signals in live rat brains with AD. The probe achieved excellent selectivity and good detection linearity for H2S in the 0-100 μM concentration range and ATP in the 2-5 mM concentration range, respectively, with a detection limit of 0.19 μM for H2S and 0.01 mM for ATP. Fluorescence imaging in live cells reveals that such probe could successfully apply for simultaneous imaging and accurate quantification of H2S and ATP in neuronal cells. Further using real-time quantitative polymerase chain reaction and Western blots, we confirmed that H2S regulates ATP synthesis by acting on cytochrome C, cytochrome oxidase subunit 3 of complex IV, and protein 6 of complex I in the mitochondrial respiratory chain. Subsequently, we constructed a high-throughput screening platform based on AD-3 probe to rapidly screen the potential anti-AD drugs to control glutamate-stimulated oxidative stress associated with abnormal H2S and ATP levels. Significantly, AD-3 probe was found capable of imaging of H2S and ATP in APP/PS1 mice, and the concentration of H2S and ATP in the AD mouse brain was found to be lower than that in wild-type mice.
Collapse
Affiliation(s)
- Panpan Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hai-Chao Chen
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Yu H, Fang Y, Wang J, Zhang Q, Chen S, Wang KP, Hu ZQ. Enhancing probe's sensitivity for peroxynitrite through alkoxy modification of dicyanovinylchromene. Anal Bioanal Chem 2022; 414:6779-6789. [PMID: 35879424 DOI: 10.1007/s00216-022-04239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
An intramolecular charge transfer (ICT)-based fluorescent probe P-ONOO- was synthesized to detect ONOO-. After responding to peroxynitrite, the dicyano-vinyl group of P-ONOO- generates the aldehyde group, emitting strong green fluorescence accompanied by quenching of the yellow fluorescence. According to the calculated Fukui function, the modification of the alkoxy group can enhance the f+ of P-ONOO-, which can enhance the probe's nucleophilic addition reactivity with ONOO-. It has been experimentally verified that P-ONOO- shows fast response (within 30 s), excellent sensitivity (the detection limit = 10.4 nM), and good selectivity towards ONOO-. Additionally, the probe P-ONOO- has high membrane permeability and good biocompatibility, which can image endogenous ONOO- and exogenous ONOO- in HeLa cells.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ying Fang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
10
|
He Y, Hu W, Chai L, Wang Y, Wang X, Liang T, Li H, Li C. A fast responsive and cell membrane-targetable near-infrared H 2S fluorescent probe for drug resistance bioassays in chemotherapy. Chem Commun (Camb) 2022; 58:7301-7304. [PMID: 35678466 DOI: 10.1039/d2cc02430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell membrane-targeted near-infrared fluorescent probe, CMCu-H2S, was fabricated through employing hydrophobic chains and cyclen-Cu2+ as targeting and recognition groups, respectively. NIR fluorescence of CMCu-H2S can significantly increase after reacting with H2S by removing the quenchable Cu2+. This probe exhibited high selectivity and an extremely fast response rate. Cell imaging results demonstrated that there was a close relationship between the overexpression of NFS1 and drug resistance and inhibition of NFS1 was beneficial for improving the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Yifan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Li Chai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xian Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Tao Liang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
11
|
Ding G, Gai F, Gou Z, Zuo Y. A fluorescent probe based on POSS for facilitating the visualization of HClO and NO in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2035-2042. [PMID: 35548909 DOI: 10.1039/d2ay00482h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The main production area of HClO and NO is the mitochondria and has modulatory effects on multiple human diseases. Simultaneous detection of signaling molecules such as HClO and NO is an important approach for exploring the complex relationship between HClO and NO in mitochondria. However, most probes can detect only one species or are unable to complete the monitoring of HClO and NO in the NIR channel. There are only few reports on reasonable tools that can simultaneously monitor the presence of HClO and NO in the NIR channel. In this work, to solve this difficulty, a POSS-assisted NIR fluorescent probe with dual-response was rationally devised and developed. The probe Mito-Cy possessed high specificity and responsiveness to HClO and NO in spectral experiments. Notably, the probe exhibited excellent responsiveness and sensitivity to HClO and NO in living cells and the zebrafish model.
Collapse
Affiliation(s)
- Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
12
|
Jothi D, Iyer SK. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
A bifunctional fluorescent probe based on PET & ICT for simultaneously recognizing Cys and H 2S in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 230:112441. [PMID: 35397303 DOI: 10.1016/j.jphotobiol.2022.112441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Most reported probes that respond to Cysteine (Cys) and Hydrogen sulfide (H2S) can only identify one analyte, or they were interfered with homocysteine (Hcy) and glutathione (GSH) when recognizing Cys and H2S. In addition, nitrobenzoxadiazole (NBD) ether, as one of thiols recognition sites, inevitably encounters the situation that Cys, GSH and H2S cannot be distinguished on the same channel at the cellular level. In this work, by introducing NBD ether and NBD amine, we constructed a bifunctional fluorescent probe NJB for dual-site response to Cys and H2S via PET & ICT processes. NJB has wonderful selectivity for identifying Cys and HS-, with limits of detection as low as 58.4 nM and 81.1 nM, respectively. Interestingly, NJB has been successfully applied to detect Cys and HS- in MCF-7 cells. Therefore, the probe that serves as a great tool for inquiring the physiological and pathological functions of Cys and H2S in living cells is promising.
Collapse
|
14
|
Wang Y, Li S, Zhu X, Shi X, Liu X, Zhang H. A novel H2O2 activated NIR fluorescent probe for accurately visualizing H2S fluctuation during oxidative stress. Anal Chim Acta 2022; 1202:339670. [DOI: 10.1016/j.aca.2022.339670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023]
|
15
|
Lu X, Wu M, Wang S, Qin J, Li P. Synthesis and preliminary exploration of a NIR fluorescent probe for the evaluation of androgen dependence of prostate cancer. Talanta 2021; 239:123058. [PMID: 34823861 DOI: 10.1016/j.talanta.2021.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Castration resistance prostate cancer patients showing resistance to the androgen deprivation therapy always have low five-year survival rate and worse prognosis. A responsive NIR fluorescent probe was designed to report the androgen dependence and monitor the development of castration resistance for prostate cancer. METHODS Intratumoral H2S in prostate cancer was closely related to castration resistance. A H2S-responsive NIR probe (HM) was developed as a dependent indicator to report the androgen dependence of prostate cancer. The specificity of HM to H2S and the influence of normal intracellular substrates to the response between H2S and HM were determined. Cell/in vivo animal imaging were performed on PC-3 and LnCAP cell/tumor bearing mice, which presented with androgen independence and androgen dependence, respectively. RESULTS When HM responded to H2S, strong fluorescence at 770 nm could be rapidly turned on in 5 min with the stokes shift as large as 200 nm. The recognition between HM and H2S showed high specificity. Neither other common substrates showed capacity to turn on HM's fluorescence, nor their existence demonstrated competition. The fluorescence intensity was linearly dependent to the H2S concentration and the limited of detection was 0.15 μM. When HM was applied to PC-3/LNCaP prostate cancer cell and tumor, the intracellular and intratumoral H2S could be clearly imaged and monitored. CONCLUSION HM showing obvious fluorescent behaviors in androgen dependence and independence prostate tumor, which could work as an indicator to reported the androgen dependence of prostate cancer and monitor the development of castration resistance.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Muyu Wu
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Siwen Wang
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jingcan Qin
- School of Medicine, Shanghai Jiao Tong University, South Chongqing Road, Shanghai, 200025, China.
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
16
|
Zuo Y, Liang X, Yin J, Gou Z, Lin W. Understanding the significant role of Si O Si bonds: Organosilicon materials as powerful platforms for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
18
|
Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem Int Ed Engl 2021; 60:8450-8454. [DOI: 10.1002/anie.202015650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tianli Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ning Ren
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Xia Liu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Dong
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ying Zhu
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - He Tian
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiang Li
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201210 China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
19
|
Lv L, Luo W, Diao Q. A novel ratiometric fluorescent probe for selective detection and imaging of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118959. [PMID: 32987270 DOI: 10.1016/j.saa.2020.118959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel phenoxazine-based fluorescent probe BPO-N3 was developed to detect H2S. The results showed that the probe had high selectivity and sensitivity toward H2S, and its detection mechanism was based the ratio between green and red fluorescence signals; its detection limit was as low as 30 nM. The fluorescent imaging experiments further showed that the probe BPO-N3 could successfully detect endogenous and exogenous H2S in living cells. This probe can be used as a powerful tool for in-depth study of H2S function in various physiological processes.
Collapse
Affiliation(s)
- Linlin Lv
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Weiwei Luo
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Quanping Diao
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China.
| |
Collapse
|
20
|
Li X, Wen Q, Gu J, Liu W, Wang Q, Zhou G, Gao J, Zheng Y. Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Jose DA, Sakla R, Sharma N, Gadiyaram S, Kaushik R, Ghosh A. Sensing and Bioimaging of the Gaseous Signaling Molecule Hydrogen Sulfide by Near-Infrared Fluorescent Probes. ACS Sens 2020; 5:3365-3391. [PMID: 33166465 DOI: 10.1021/acssensors.0c02005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A fluorescent probe for the monitoring of H2S levels in living cells and organisms is highly desirable. In this regard, near-infrared (NIR) fluorescent probes have emerged as a promising tool. NIR-I and NIR-II probes have many significant advantages; for instance, NIR light penetrates deeper into tissue than light at visible wavelengths, and it causes less photodamage during biosample analysis and less autofluorescence, enabling higher signal-to-background ratios. Therefore, it is expected that fluorescent probes having emission in the NIR region are more suitable for in vivo imaging. Consequently, a considerable increase in reports of new H2S-responsive NIR fluorescent probes appeared in the literature. This review highlights the advances made in developing new NIR fluorescent probes aimed at the sensitive and selective detection of H2S in biological samples. Their applications in real-time monitoring of H2S in cells and in vivo for bioimaging of living cells/animals are emphasized. The selection of suitable dyes for designing NIR fluorescent probes, along with the principles and mechanisms involved for the sensing of H2S in the NIR region, are described. The discussions are focused on small-molecule and nanomaterials-based NIR probes.
Collapse
Affiliation(s)
- D. Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Srushti Gadiyaram
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Kaushik
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Amrita Ghosh
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| |
Collapse
|
22
|
Chang YL, Wei TC, Liu YL. Electrochemical activation of polymer chains mediated with radical transfer reactions. Chem Commun (Camb) 2020; 56:2626-2629. [PMID: 32016254 DOI: 10.1039/c9cc09768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This work demonstrates a general and effective approach to activate inert polymer chains for further reactions through electrochemically driven radical generation and radical transfer reactions. The generated radical-containing polymer chains show capacity for further polymer reactions and preparation of polymer hybrids.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Chemical Engineering, National Tsing Hua University, #101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
23
|
Zuo Q, Wu Q, Lv Y, Gong X, Cheng D. Imaging of endoplasmic reticulum superoxide anion fluctuation in a liver injury model by a selective two-photon fluorescent probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj00487a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An endoplasmic reticulum-targeted two-photon probe is reported with excellent sensitivity and selectivity for visualizing the O2˙− level in a liver injury model.
Collapse
Affiliation(s)
- Qingping Zuo
- Department of Pharmacy
- The First Hospital of Changsha
- Changsha
- P. R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
24
|
Li H, Hao YH, Feng W, Song QH. Rapid and sensitive detection of nitric oxide by a BODIPY-based fluorescent probe in live cells: glutathione effects. J Mater Chem B 2020; 8:9785-9793. [DOI: 10.1039/d0tb01784a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione effects on the sensing reaction toward nitric oxide in live cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yu-Hao Hao
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Wei Feng
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qin-Hua Song
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|