1
|
Rippke M, Tian X, Reiß F, Wu L, Beweries T. Dehydrocoupling of Ammonia/Amine Boranes and Related Transformations Catalysed by Group 4 Metal Complexes. Chemistry 2024:e202403982. [PMID: 39658511 DOI: 10.1002/chem.202403982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Ammonia borane and amine boranes are main group analogues of alkanes, which are characterised by their large gravimetric hydrogen content. This hydrogen can be released in dehydrocoupling and dehydropolymerisation reactions to obtain B-N oligomers and polymers that are of importance as precursors for functional B-N materials. Furthermore, amine boranes are potent reagents for application in transfer hydrogenation reactions, representing a versatile, easy-to-handle alternative to the use of gaseous hydrogen for the reduction of organic compounds. Compared to late transition metals, complexes of readily available and comparatively inexpensive electropositive group 4 metals have been used to a much lesser extent. This review summarises the developments in the field of dehydrocoupling of amine boranes and transfer hydrogenation with these reagents, catalysed by complexes of group 4 metals. We analyse the background for these developments using examples and reaction mechanisms and provide an outlook for future developments in this field of research.
Collapse
Affiliation(s)
- Mirko Rippke
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Ximei Tian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fabian Reiß
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Torsten Beweries
- Leibniz Institute for Catalysis Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Gulyaeva ES, Osipova ES, Kovalenko SA, Filippov OA, Belkova NV, Vendier L, Canac Y, Shubina ES, Valyaev DA. Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes via intermolecular bimetallic cooperation. Chem Sci 2024; 15:1409-1417. [PMID: 38274083 PMCID: PMC10806649 DOI: 10.1039/d3sc05356c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Metal-metal cooperation for inert bond activation is a ubiquitous concept in coordination chemistry and catalysis. While the great majority of such transformations proceed via intramolecular mode in binuclear complexes, to date only a few examples of intermolecular small molecule activation using usually bimetallic frustrated Lewis pairs (Mδ+⋯M'δ-) have been reported. We introduce herein an alternative approach for the intermolecular bimetallic cooperativity observed in the catalytic dehydrogenation of amine-boranes, in which the concomitant activation of N-H and B-H bonds of the substrate via the synergetic action of Lewis acidic (M+) and basic hydride (M-H) metal species derived from the same mononuclear complex (M-Br). It was also demonstrated that this system generated in situ from the air-stable Mn(i) complex fac-[(CO)3(bis(NHC))MnBr] and NaBPh4 shows high activity for H2 production from several substrates (Me2NHBH3, tBuNH2BH3, MeNH2BH3, NH3BH3) at low catalyst loading (0.1% to 50 ppm), providing outstanding efficiency for Me2NHBH3 (TON up to 18 200) that is largely superior to all known 3d-, s-, p-, f-block metal derivatives and frustrated Lewis pairs (FLPs). These results represent a step forward towards more extensive use of intermolecular bimetallic cooperation concepts in modern homogeneous catalysis.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
3
|
Cross MJ, Brodie CN, Crivoi DG, Goodall JC, Ryan DE, Martínez‐Martínez AJ, Johnson A, Weller AS. Dehydropolymerization of Amine-Boranes using Bis(imino)pyridine Rhodium Pre-Catalysis: σ-Amine-Borane Complexes, Nanoparticles, and Low Residual-Metal BN-Polymers that can be Chemically Repurposed. Chemistry 2023; 29:e202302110. [PMID: 37530441 PMCID: PMC10947130 DOI: 10.1002/chem.202302110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
The sigma amine-borane complexes [Rh(L1)(η2 :η2 -H3 B⋅NRH2 )][OTf] (L1=2,6-bis-[1-(2,6-diisopropylphenylimino)ethyl]pyridine, R=Me, Et, n Pr) are described, alongside [Rh(L1)(NMeH2 )][OTf]. Using R=Me as a pre-catalyst (1 mol %) the dehydropolymerization of H3 B ⋅ NMeH2 gives [H2 BNMeH]n selectively. Added NMeH2 , or the direct use of [Rh(L1)(NMeH2 )][OTf], is required for initiation of catalysis, which is suggested to operate through the formation of a neutral hydride complex, Rh(L1)H. The formation of small (1-5 nm) nanoparticles is observed at the end of catalysis, but studies are ambiguous as to whether the catalysis is solely nanoparticle promoted or if there is a molecular homogeneous component. [Rh(L1)(NMeH2 )][OTf] is shown to operate at 0.025 mol % loadings on a 2 g scale of H3 B ⋅ NMeH2 to give polyaminoborane [H2 BNMeH]n [Mn =30,900 g/mol, Ð=1.8] that can be purified to a low residual [Rh] (6 μg/g). Addition of Na[N(SiMe3 )2 ] to [H2 BNMeH]n results in selective depolymerization to form the eee-isomer of N,N,N-trimethylcyclotriborazane [H2 BNMeH]3 : the chemical repurposing of a main-group polymer.
Collapse
Affiliation(s)
| | | | - Dana G. Crivoi
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | | | - David E. Ryan
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Antonio J. Martínez‐Martínez
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Supramolecular Organometallic and Main Group Chemistry Laboratory CIQSO-Center for Research in Sustainable Chemistry and Department of ChemistryUniversity of HuelvaCampus El Carmen21007HuelvaSpain
| | - Alice Johnson
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Department of Biosciences and ChemistrySheffield Hallam UniversityHoward StSheffieldS1 1WBUK
| | | |
Collapse
|
4
|
Chowdhury D, Mukherjee A. Easy Access to Tertiary Amines from Carbonyl Compounds with Substituted Amine-Boranes: A Substrate, Catalyst, and Additive-Free Approach Under Mild Conditions. Chem Asian J 2023; 18:e202300661. [PMID: 37671911 DOI: 10.1002/asia.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Tertiary amines are ubiquitous and play an essential role in organocatalysis, pharmaceuticals, and fine chemicals. Amongst various synthetic procedures known for their synthesis, the reductive amination of carbonyl compounds has been found to be a proficient method. Over the past few decades, different synthetic strategies for reductive amination have been developed. Most of them suffer from the use of transition metals and/or harsh reaction conditions. Herein, we present an efficient, operationally simple protocol for the chemoselective transformation of carbonyl compounds to tertiary amines under benign conditions. The strategy encompasses a broad substrate scope under the metal-free condition at room temperature and does not require any solvent. A detailed mechanistic investigation was performed with the aid of control experiments and computational study to shed light on the reaction pathway.
Collapse
Affiliation(s)
- Deep Chowdhury
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India
| |
Collapse
|
5
|
Peng C, Liu W, Wang Y. Mechanistic insights into H 3B·NMeH 2 dehydrogenation by Co-based complexes: a DFT perspective. NEW J CHEM 2023. [DOI: 10.1039/d2nj06155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Mechanistic insights into Co-catalyzed H3B·NMeH2 dehydrogenation and polyaminoborane formation are carefully investigated using density functional theory.
Collapse
Affiliation(s)
- Cheng Peng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Oldroyd NL, Chitnis SS, LaPierre EA, Annibale VT, Walsgrove HTG, Gates DP, Manners I. Ambient Temperature Carbene-Mediated Depolymerization: Stoichiometric and Catalytic Reactions of N-Heterocyclic- and Cyclic(Alkyl)Amino Carbenes with Poly( N-Methylaminoborane) [MeNH–BH 2] n. J Am Chem Soc 2022; 144:23179-23190. [DOI: 10.1021/jacs.2c10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicola L. Oldroyd
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Saurabh S. Chitnis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Etienne A. LaPierre
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Vincent T. Annibale
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8W 3V6, Canada
| |
Collapse
|
7
|
Brodie CN, Sotorrios L, Boyd TM, Macgregor SA, Weller AS. Dehydropolymerization of H 3B·NMeH 2 Mediated by Cationic Iridium(III) Precatalysts Bearing κ 3- iPr-PN RP Pincer Ligands ( R = H, Me): An Unexpected Inner-Sphere Mechanism. ACS Catal 2022; 12:13050-13064. [PMID: 36313521 PMCID: PMC9594342 DOI: 10.1021/acscatal.2c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Indexed: 11/30/2022]
Abstract
![]()
The dehydropolymerization of H3B·NMeH2 to form N-methylpolyaminoborane using neutral
and
cationic catalysts based on the {Ir(iPr-PNHP)} fragment [iPr-PNHP = κ3-(CH2CH2PiPr2)2NH] is reported. Neutral
Ir(iPr-PNHP)H3 or
Ir(iPr-PNHP)H2Cl
precatalysts show no, or poor and unselective, activity respectively
at 298 K in 1,2-F2C6H4 solution.
In contrast, addition of [NMeH3][BArF4] (ArF = 3,5-(CF3)2C6H3) to Ir(iPr-PNHP)H3 immediately starts catalysis, suggesting that a cationic
catalytic manifold operates. Consistent with this, independently synthesized
cationic precatalysts are active (tested between 0.5 and 2.0 mol %
loading) producing poly(N-methylaminoborane) with Mn ∼ 40,000 g/mol, Đ ∼1.5, i.e., dihydrogen/dihydride, [Ir(iPr-PNHP)(H)2(H2)][BArF4]; σ-amine-borane [Ir(iPr-PNHP)(H)2(H3B·NMe3)][BArF4]; and [Ir(iPr-PNHP)(H)2(NMeH2)][BArF4]. Density functional theory (DFT) calculations
probe hydride exchange processes in two of these complexes and also
show that the barrier to amine-borane dehydrogenation is lower (22.5
kcal/mol) for the cationic system compared with the neutral system
(24.3 kcal/mol). The calculations show that the dehydrogenation proceeds
via an inner-sphere process without metal–ligand cooperativity,
and this is supported experimentally by N–Me substituted [Ir(iPr-PNMeP)(H)2(H3B·NMe3)][BArF4] being
an active catalyst. Key to the lower barrier calculated for the cationic
system is the outer-sphere coordination of an additional H3B·NMeH2 with the N–H group of the ligand.
Experimentally, kinetic studies indicate a complex reaction manifold
that shows pronounced deceleratory temporal profiles. As supported
by speciation and DFT studies, a key observation is that deprotonation
of [Ir(iPr-NHP)(H)2(H2)][BArF4], formed upon amine-borane
dehydrogenation, by the slow in situ formation of NMeH2 (via B–N bond cleavage), results in the formation of essentially
inactive Ir(iPr-PNHP)H3, with a coproduct of [NMeH3]+/[H2B(NMeH2)2]+. While reprotonation
of Ir(iPr-PNHP)H3 results in a return to the cationic cycle, it is proposed, supported
by doping experiments, that reprotonation is attenuated by entrainment
of the [NMeH3]+/[H2B(NMeH2)2]+/catalyst in insoluble polyaminoborane.
The role of [NMeH3]+/[H2B(NMeH2)]+ as chain control agents is also noted.
Collapse
Affiliation(s)
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Timothy M. Boyd
- Department of Chemistry, University of York, York YO10 5DD, U.K
- Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | |
Collapse
|
8
|
Schön F, Sigmund LM, Schneider F, Hartmann D, Wiebe MA, Manners I, Greb L. Calix[4]pyrrolato Aluminate Catalyzes the Dehydrocoupling of Phenylphosphine Borane to High Molar Weight Polymers. Angew Chem Int Ed Engl 2022; 61:e202202176. [PMID: 35235698 PMCID: PMC9313825 DOI: 10.1002/anie.202202176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 01/13/2023]
Abstract
High molar weight polyphosphinoboranes represent materials with auspicious properties, but their preparation requires transition metal-based catalysts. Here, calix[4]pyrrolato aluminate is shown to induce the dehydropolymerization of phosphine boranes to high molar mass polyphosphinoboranes (up to Mn =43 000 Da). Combined GPC and 31 P DOSY NMR spectroscopic analyses, quantum chemical computations, and stoichiometric reactions disclose a P-H bond activation by the cooperative action of the square-planar aluminate and the electron-rich ligand framework. This first transition metal-free catalyst for P-B dehydrocoupling overcomes the problem of residual d-block metal impurities in the resulting polymers that might interfere with the reproducibility of the properties for this emerging class of inorganic materials.
Collapse
Affiliation(s)
- Florian Schön
- Department of ChemistryUniversity of VictoriaVictoriaBC, V8P 5C2Canada
| | - Lukas M. Sigmund
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Friederike Schneider
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Department of ChemistryUniversity of VictoriaVictoriaBC, V8P 5C2Canada
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthew A. Wiebe
- Department of ChemistryUniversity of VictoriaVictoriaBC, V8P 5C2Canada
| | - Ian Manners
- Department of ChemistryUniversity of VictoriaVictoriaBC, V8P 5C2Canada
| | - Lutz Greb
- Anorganische Chemie, Freie Universität BerlinFabeckstraße 34–3614195BerlinGermany
| |
Collapse
|
9
|
Schön F, Sigmund LM, Schneider F, Hartmann D, Wiebe MA, Manners I, Greb L. Calix[4]pyrrolato Aluminate Catalyzes the Dehydrocoupling of Phenylphosphine Borane to High Molar Weight Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Florian Schön
- Department of Chemistry University of Victoria Victoria BC, V8P 5C2 Canada
| | - Lukas M. Sigmund
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Friederike Schneider
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Department of Chemistry University of Victoria Victoria BC, V8P 5C2 Canada
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthew A. Wiebe
- Department of Chemistry University of Victoria Victoria BC, V8P 5C2 Canada
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC, V8P 5C2 Canada
| | - Lutz Greb
- Anorganische Chemie, Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| |
Collapse
|
10
|
Decker D, Wei Z, Rabeah J, Drexler HJ, Brückner A, Jiao H, Beweries T. Catalytic and mechanistic studies of a highly active and E-selective Co(II) PNNH pincer catalyst system for transfer-semihydrogenation of internal alkynes. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the application of a Co(II) PNNH pincer catalyst system (PNNH = 2-(5-(t-butyl)-1H-pyrazol-3-yl)-6-(dialkylphosphinomethyl)pyridine) for the highly E-selective transfer semihydrogenation of internal diaryl alkynes using methanol and ammonia borane...
Collapse
|
11
|
Brodie CN, Boyd TM, Sotorríos L, Ryan DE, Magee E, Huband S, Town JS, Lloyd-Jones GC, Haddleton DM, Macgregor SA, Weller AS. Controlled Synthesis of Well-Defined Polyaminoboranes on Scale Using a Robust and Efficient Catalyst. J Am Chem Soc 2021; 143:21010-21023. [PMID: 34846131 DOI: 10.1021/jacs.1c10888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The air tolerant precatalyst, [Rh(L)(NBD)]Cl ([1]Cl) [L = κ3-(iPr2PCH2CH2)2NH, NBD = norbornadiene], mediates the selective synthesis of N-methylpolyaminoborane, (H2BNMeH)n, by dehydropolymerization of H3B·NMeH2. Kinetic, speciation, and DFT studies show an induction period in which the active catalyst, Rh(L)H3 (3), forms, which sits as an outer-sphere adduct 3·H3BNMeH2 as the resting state. At the end of catalysis, dormant Rh(L)H2Cl (2) is formed. Reaction of 2 with H3B·NMeH2 returns 3, alongside the proposed formation of boronium [H2B(NMeH2)2]Cl. Aided by isotopic labeling, Eyring analysis, and DFT calculations, a mechanism is proposed in which the cooperative "PNHP" ligand templates dehydrogenation, releasing H2B═NMeH (ΔG‡calc = 19.6 kcal mol-1). H2B═NMeH is proposed to undergo rapid, low barrier, head-to-tail chain propagation for which 3 is the catalyst/initiator. A high molecular weight polymer is formed that is relatively insensitive to catalyst loading (Mn ∼71 000 g mol-1; Đ, of ∼ 1.6). The molecular weight can be controlled using [H2B(NMe2H)2]Cl as a chain transfer agent, Mn = 37 900-78 100 g mol-1. This polymerization is suggested to arise from an ensemble of processes (catalyst speciation, dehydrogenation, propagation, chain transfer) that are geared around the concentration of H3B·NMeH2. TGA and DSC thermal analysis of polymer produced on scale (10 g, 0.01 mol % [1]Cl) show a processing window that allows for melt extrusion of polyaminoborane strands, as well as hot pressing, drop casting, and electrospray deposition. By variation of conditions in the latter, smooth or porous microstructured films or spherical polyaminoboranes beads (∼100 nm) result.
Collapse
Affiliation(s)
- Claire N Brodie
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K
| | - Timothy M Boyd
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Lia Sotorríos
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David E Ryan
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Eimear Magee
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, U.K
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - James S Town
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, Scotland, U.K
| | - David M Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K
| |
Collapse
|
12
|
Sarkar K, Das K, Kundu A, Adhikari D, Maji B. Phosphine-Free Manganese Catalyst Enables Selective Transfer Hydrogenation of Nitriles to Primary and Secondary Amines Using Ammonia–Borane. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar-140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar-140306, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India
| |
Collapse
|
13
|
Lindenau K, Jannsen N, Rippke M, Al Hamwi H, Selle C, Drexler HJ, Spannenberg A, Sawall M, Neymeyr K, Heller D, Reiß F, Beweries T. Mechanistic insights into dehydrocoupling of amine boranes using dinuclear zirconocene complexes. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00531f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic dehydrocoupling of H3B·NMe2H using Cp2Zr(Cl)(μ-Me3SiC3SiMe3)Zr(Cl)Cp2 (1)/MeLi was studied. Spectroscopic monitoring and stoichiometric experiments show the formation and interconversion of several catalytically active Zr species.
Collapse
Affiliation(s)
| | - Nora Jannsen
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | - Mirko Rippke
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | - Carmen Selle
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | | - Mathias Sawall
- Institut für Mathematik
- Universität Rostock
- 18055 Rostock
- Germany
| | - Klaus Neymeyr
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
- Institut für Mathematik
- Universität Rostock
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | - Fabian Reiß
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | |
Collapse
|
14
|
Hasche P, Haak J, Anke F, Kubis C, Baumann W, Drexler HJ, Jiao H, Beweries T. Dehydropolymerisation of methylamine borane using highly active rhodium(iii) bis(thiophosphinite) pincer complexes: catalytic and mechanistic insights. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00124h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bis(thiophosphinite) pincer complexes [(RPSCSPR)Rh(py)(H)(Cl)] (RPSCSPR = C6H4–2,6-(SPR2)2 with R = iPr, 2a and R = Ph, 2b) are highly active precatalysts for the dehydropolymerisation of methylamine borane.
Collapse
Affiliation(s)
- Patrick Hasche
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | - Julia Haak
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | - Felix Anke
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | - Christoph Kubis
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | | | | | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. (LIKAT)
- 18059 Rostock
- Germany
| | | |
Collapse
|
15
|
Robinson S, Puddephatt RJ. Reactions of organoplatinum complexes with dimethylamine-borane. NEW J CHEM 2021. [DOI: 10.1039/d0nj03168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of organoplatinum complexes with dimethylamineborane are reported.
Collapse
Affiliation(s)
- Shawn Robinson
- Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada
| | | |
Collapse
|
16
|
Liu X, Longwitz L, Spiegelberg B, Tönjes J, Beweries T, Werner T. Erbium-Catalyzed Regioselective Isomerization–Cobalt-Catalyzed Transfer Hydrogenation Sequence for the Synthesis of Anti-Markovnikov Alcohols from Epoxides under Mild Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Liu
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Lars Longwitz
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Brian Spiegelberg
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Jan Tönjes
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Torsten Beweries
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| |
Collapse
|
17
|
Nugent JW, García-Melchor M, Fout AR. Cobalt-Catalyzed Ammonia Borane Dehydrogenation: Mechanistic Insight and Isolation of a Cobalt Hydride-Amidoborane Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph W. Nugent
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Ryan DE, Andrea KA, Race JJ, Boyd TM, Lloyd-Jones GC, Weller AS. Amine–Borane Dehydropolymerization Using Rh-Based Precatalysts: Resting State, Chain Control, and Efficient Polymer Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David E. Ryan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Kori A. Andrea
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - James J. Race
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Timothy M. Boyd
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Guy C. Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|