1
|
Rostami MS, Khodaei MM. Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. Int J Biol Macromol 2024; 270:132386. [PMID: 38754671 DOI: 10.1016/j.ijbiomac.2024.132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Due to the high concentration of various toxic and dangerous pollutants, industrial effluents have imposed increasing threats. Among the various processes for wastewater treatment, adsorption is widely used due to its simplicity, good treatment efficiency, availability of a wide range of adsorbents, and cost-effectiveness. Chitosan (CS) has received great attention as a pollutant adsorbent due to its low cost and many -OH and -NH2 functional groups that can bind heavy metal ions. However, weaknesses such as sensitivity to pH, low thermal stability and low mechanical strength, limit the application of CS in wastewater treatment. The modification of these functional groups can improve its performance via cross-linking and grafting agents. The porosity and specific surface area of CS in powder form are not ideal, so physical modification of CS via integration with other materials (e.g., metal oxide, zeolite, clay, etc.) leads to the creation of composite materials with improved absorption performance. This review provides reports on the application of CS and its nanocomposites (NCs) for the removal of various heavy metal ions. Synthesis strategy, adsorption mechanism and influencing factors on sorbents for heavy metals are discussed in detail.
Collapse
Affiliation(s)
| | - Mohammad Mehdi Khodaei
- Department of Organic Chemistry, Razi University, 67149-67346 Kermanshah, Iran; Nanoscience and Nanotechnology Research Center, Razi University, 67149-67346 Kermanshah, Iran.
| |
Collapse
|
2
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 53:1289-1309. [DOI: doi.org/10.1080/10643389.2023.2168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yang Li
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Hui Yang
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, P.R. China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| |
Collapse
|
5
|
Rivadeneira-Mendoza BF, Estrela Filho OA, Fernández-Andrade KJ, Curbelo F, Fred da Silva F, Luque R, Rodríguez-Díaz JM. MOF@biomass hybrids: Trends on advanced functional materials for adsorption. ENVIRONMENTAL RESEARCH 2023; 216:114424. [PMID: 36162474 DOI: 10.1016/j.envres.2022.114424] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This contribution aims to demonstrate the scope of new hybrids between biomass and metal-organic frameworks (MOF@biomass) used in the adsorption process of pollutants. After a brief presentation of the use of the main series of MOFs as efficient adsorbents for different types of pollutants, the limitations of these structures related to particle size and hydrodynamic problems during their application are highlighted. Lignocellulosic biomasses are also recognized as an alternative adsorbent, mainly due to their high natural abundance and their low environmental impact during and after their application. The limited capacity of bioadsorbents becomes important in this research. Consequently, the largest amount of information existing in the last ten years on MOF-Biomass functionalization as a hybrid and improvement technology for adsorption processes is compiled, analyzed, compared and contrasted. So far, there is no evidence of works that exploit the concept of functionalization of adsorbents of different nature to give rise to new hybrid materials. Through this review it was found that the hybrids obtained show a higher adsorption capacity (Qe) compared to their precursors, due to the increase of organic functional groups provided by the biomass. Thus, for heavy metals, dyes, Arsenium anions and other organic and pharmaceutical compounds, there are increases in Qe of about 100 mg g-1. The possibility of the new hybrid being studied for desorption and reuse processes is also raised, resulting in a new line of research that is attractive for the industry from an economic and environmental point of view. The functionalization methods and techniques used in the studies cited in this article are outlined. In conclusion, this research brings a new horizon of study in the field of adsorption and mentions the main future challenges related to new sustainable applications.
Collapse
Affiliation(s)
| | - Otoniel Anacleto Estrela Filho
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Kevin Jhon Fernández-Andrade
- Instituto de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Fabiola Curbelo
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil; Department of Chemical Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Fausthon Fred da Silva
- Departamento de Química, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa - PB, Brazil; Biomaterials Engineering, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
6
|
Synergistic adsorption of U(VI) from seawater by MXene and amidoxime mixed matrix membrane with high efficiency. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Govarthanan M, Jeon CH, Kim W. Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119049. [PMID: 35271953 DOI: 10.1016/j.envpol.2022.119049] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb2+ ions from synthetic aqueous solutions was systematically studied. The Pb2+ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb2+ onto the prepared composite material were investigated. Moreover, the adsorption of Pb2+ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb2+ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb2+ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb2+ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb2+ ions from aqueous environments.
Collapse
Affiliation(s)
- M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyun Jeon
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
9
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
El-Wakil A, Waly SM, Abou El-Maaty WM, Waly MM, Yılmaz M, Awad FS. Triazine-Based Functionalized Activated Carbon Prepared from Water Hyacinth for the Removal of Hg 2+, Pb 2+, and Cd 2+ Ions from Water. ACS OMEGA 2022; 7:6058-6069. [PMID: 35224367 PMCID: PMC8867800 DOI: 10.1021/acsomega.1c06441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A novel chelating adsorbent, based on the functionalization of activated carbon (AC) derived from water hyacinth (WH) with melamine thiourea (MT) to form melamine thiourea-modified activated carbon (MT-MAC), is used for the effective removal of Hg2+, Pb2+, and Cd2+ from aqueous solution. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) theory confirm the successful functionalization of AC with the melamine thiourea chelating ligand through the amidation reaction between the carboxyl groups of oxidized activated carbon (OAC) and the amino groups of melamine thiourea (MT) in the presence of dicyclohexylcarbodiimide (DCC) as a coupling agent. The prepared MT-MAC exhibited extensive potential for the adsorption of the toxic metal ions Hg2+, Pb2+, and Cd2+ from wastewater. The MT-MAC showed high capacities for the adsorption of Hg2+ (292.6 mg·g-1), Pb2+ (237.4 mg·g-1), and Cd2+ (97.9 mg·g-1) from aqueous solution. Additionally, 100% removal efficiency of Hg2+ at pH 5.5 was observed at very low initial concentrations (25-1000 ppb).The experimental sorption data could be fitted well with the Langmuir isotherm model, suggesting a monolayer adsorption behavior. The kinetic data of the chemisorption mechanism realized by the melamine thiourea groups grafted onto the activated carbon surface have a perfect match with the pseudo-second-order (PSO) kinetic model. In a mixed solution of metal ions containing 50 ppm of each ion, MT-MAC showed a removal of 97.0% Hg2+, 68% Pb2+, 45.0% Cd2+, 17.0% Cu2+, 7.0% Ni2+, and 5.0% Zn2+. Consequently, MT-MAC has exceptional selectivity for Hg2+ ions from the mixed metal ion solutions. The MT-MAC adsorbent showed high stability even after three adsorption-desorption cycles. According to the results obtained, the use of the MT-MAC adsorbent for the adsorption of Pb2+, Hg2+, and Cd2+ metal ions from polluted water is promising.
Collapse
Affiliation(s)
- Ahmad
M. El-Wakil
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Saadia M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Weam M. Abou El-Maaty
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Mohamed M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Murat Yılmaz
- Department
of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103543] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Ali S, Zuhra Z, Abbas Y, Shu Y, Ahmad M, Wang Z. Tailoring Defect Density in UiO-66 Frameworks for Enhanced Pb(II) Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13602-13609. [PMID: 34767379 DOI: 10.1021/acs.langmuir.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defect engineering of metal organic frameworks offers potential prospects for tuning their features toward particular applications. Herein, two series of defective UiO-66 frameworks were synthesized via changing the concentration of the linker and synthetic temperature of the reaction. These defective materials showed a significant improvement in the capability of Pb(II) removal from wastewater. This strategy for defect engineering not only created additional active sites, more open framework, and enhanced porosity but also exposed more oxygen groups, which served as the adsorption sites to improve Pb(II) adsorption. A relationship among degree of defects, texture features, and performances for Pb(II) removal was successfully developed as a proof-of-concept, highlighting the importance of defect engineering in heavy metal remediation. To investigate the kinetic and adsorption isotherms, we performed adsorption experiments influenced by the time and concentration of the adsorbate, respectively. For the practicality of the materials, the most significant parameters such as pH, temperature, adsorbent concentration, selectivity, and recyclability as well as simulated natural surface water were also examined. This study provides a clue for the researchers to design other advanced defective materials for the enhancement of adsorption performance by tuning the defect engineering.
Collapse
Affiliation(s)
- Shafqat Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Zareen Zuhra
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Yasir Abbas
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Yufei Shu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 00000, Hong Kong
| | - Zhongying Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
15
|
Awad FS, Bakry AM, Ibrahim AA, Lin A, El-Shall MS. Thiol- and Amine-Incorporated UIO-66-NH 2 as an Efficient Adsorbent for the Removal of Mercury(II) and Phosphate Ions from Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fathi S. Awad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayyob M. Bakry
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Jazan University, Jizan 45142, Saudi Arabia
| | - Amr Awad Ibrahim
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
16
|
Liu P, Yang P, Yang J, Gu J. One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba 2. Chem Commun (Camb) 2021; 57:5822-5825. [PMID: 34002199 DOI: 10.1039/d1cc01740c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient decontamination of radioactive Ba2+ is of great significance to human health and environmental safety. Herein, an adsorbent based on the sulfonic acid functionalized Zr-MOF has been successfully developed, which could efficiently decontaminate radioactive Ba2+ with excellent selectivity, recyclability, a high adsorption capacity up to 60.8 mg g-1 as well as a short adsorption kinetic time of less than 5 min. This outstanding adsorption performance is attributed to the strong affinity between Ba2+ and high density -SO3H active sites in MOFs which were introduced by an in situ ligand modification strategy during the assembly of MOFs.
Collapse
Affiliation(s)
- Peijia Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pengfei Yang
- Skshu Paint Co., Ltd, Fujian Key Laboratory of Architectural Coating, 518 North Liyuan Avenue, Licheng District Putian, Fujian, 351100, China
| | - Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
17
|
Gu Y, Li H, Ye M, Zhang X, Zhang H, Wang G, Zhang Y. A universal route to fabricate bacterial cellulose-based composite membranes for simultaneous removal of multiple pollutants. Chem Commun (Camb) 2021; 57:8592-8595. [PMID: 34357369 DOI: 10.1039/d1cc02397g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-standing, robust bacterial cellulose (BC)-based multifunctional composite membrane embedded with desirable nano-adsorbents has been successfully fabricated via a facile versatile strategy. As expected, the developed BC-based composite membrane enables the simultaneous and efficient removal of multiple co-existing pollutants.
Collapse
Affiliation(s)
- Yue Gu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, HFIPS, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Nazari M, Amini A, Eden NT, Duke MC, Cheng C, Hill MR. Highly-Efficient Sulfonated UiO-66(Zr) Optical Fiber for Rapid Detection of Trace Levels of Pb 2. Int J Mol Sci 2021; 22:ijms22116053. [PMID: 34205199 PMCID: PMC8200020 DOI: 10.3390/ijms22116053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO3H group (SO3H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb2+) in water at 25.2, 43.5 and 64.0 ppm levels. The SO3H-UiO-66(Zr) system provides a Fabry–Perot sensor by which the lead ions are detected rapidly (milliseconds) at 25.2 ppm aqueous solution reflecting in the wavelength shifts in interference spectrum. The proposed removal mechanism is based on the adsorption of [Pb(OH2)6]2+ in water on SO3H-UiO-66(Zr) due to a strong affinity between functionalized MOF and lead. This is the first work that advances a multi-purpose optical fiber-coated functional MOF as an on-site remote chemical sensor for rapid detection of lead cations at extremely low concentrations in an aqueous system.
Collapse
Affiliation(s)
- Marziyeh Nazari
- Mathematics and Physics Department, School of Engineering, Australian College of Kuwait, Safat 13015, Kuwait;
- Institute for Sustainable Industries and Livable Cities (ISILC), Victoria University, Melbourne, VIC 8001, Australia;
| | - Abbas Amini
- Mechanical Engineering Department, School of Engineering, Australian College of Kuwait, Safat 13015, Kuwait
- Center for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence:
| | - Nathan T. Eden
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; (N.T.E.); (M.R.H.)
| | - Mikel C. Duke
- Institute for Sustainable Industries and Livable Cities (ISILC), Victoria University, Melbourne, VIC 8001, Australia;
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China;
| | - Matthew R. Hill
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia; (N.T.E.); (M.R.H.)
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| |
Collapse
|
19
|
The performance and mechanism of U(VI) removal from aqueous solutions by a metal–organic framework (DUT-69). J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07645-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Rabon AM, Doremus JG, Young MC. MOF-808 as a recyclable catalyst for the photothermal acetalization of aromatic aldehydes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
22
|
Yuan N, Gong X, Sun W, Yu C. Advanced applications of Zr-based MOFs in the removal of water pollutants. CHEMOSPHERE 2021; 267:128863. [PMID: 33199106 DOI: 10.1016/j.chemosphere.2020.128863] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The global water pollution is caused by the increase of industrial and agricultural activities, which have produced various toxic pollutants. Pollutants in water generally consist of metal ions, pharmaceuticals and personal care products (PPCPs), oil spills, organic dyes, and other organic pollutants. Amongst the adsorbents that have been developed to deal with pollutants in water, Zr-based metal-organic frameworks (MOFs) have drawn scientists' great attention due to their excellent stability and adjustable functionalization. Herein, the present review article introduces the synthetic methods of functionalized Zr-based MOFs and summarizes their applications in water pollution treatment. It also clarifies the interactions and removal mechanisms between pollutants and Zr-based MOFs. The use of these MOFs with eminent adsorption ability and recycling performance have been discussed in detail. Zr-based MOFs also face some challenges such as high cost, lack of real water environment applications, selective removal of pollutants, and low ability to remove composite pollutants. Future research should focus on addressing these issues. Although there is still a blank of the practical utility of Zr-based MOFs on a commercial scale, the research reported to date clearly shows that they are very promising materials for the water treatment.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xinrui Gong
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Wenduo Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
23
|
Xue ZZ, Li XY, Xu L, Han SD, Pan J, Wang GM. Novel silver(i) cluster-based coordination polymers as efficient luminescent thermometers. CrystEngComm 2021. [DOI: 10.1039/d0ce01507e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two original Ag-based clusters with a multidentate N-containing organic linker have been constructed featuring temperature-dependent luminescence behavior.
Collapse
Affiliation(s)
- Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Xin-Yu Li
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Lei Xu
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering
- Qingdao University
- P. R. China
| |
Collapse
|
24
|
Xu GR, An ZH, Xu K, Liu Q, Das R, Zhao HL. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213554] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Bakry A, Awad FS, Bobb JA, El-Shall MS. Multifunctional Binding Sites on Nitrogen-Doped Carboxylated Porous Carbon for Highly Efficient Adsorption of Pb(II), Hg(II), and Cr(VI) Ions. ACS OMEGA 2020; 5:33090-33100. [PMID: 33403271 PMCID: PMC7774276 DOI: 10.1021/acsomega.0c04695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal ions represent one of the most toxic and environmentally harmful pollutants of water sources. This work reports the development of a novel chelating nitrogen-doped carboxylated porous carbon (ND-CPC) adsorbent for the effective removal of the heavy metal ions Pb(II), Hg(II), and Cr(VI) from contaminated and polluted water sources. The ND-CPC adsorbent is designed to combine four different types of nitrogen functional groups (graphitic, pyrrolic, pyridinic, and pyridine oxide) with the carboxylic acid functional groups within a high surface area of 1135 ± 20 m2/g of the porous carbon structure. The ND-CPC adsorbent shows exceptionally high adsorption affinity for Pb(II) with a capacity of 721 ± 14 mg/g in addition to high uptake values of 257 ± 5 and 104 ± 2 mg/g for Hg(II) and Cr(VI), respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb(II) from 50 ppb and 10 ppm concentrations is 30 s and 60 min, respectively. Even with the very high concentration of 700 ppm, 74% uptake of Pb(II) is achieved within 90 min. Removal efficiencies of 100% of Pb(II), 96% of Hg(II), 91% of Cu(II), 82% of Zn(II), 25% of Cd(II), and 13% of Ni(II) are achieved from a solution containing 10 ppm concentrations of these ions, thus demonstrating excellent selectivity for Pb(II), Hg(II), and Cu(II) ions. Regeneration of the ND-CPC adsorbent shows excellent desorption efficiencies of 99 and 95% for Pb(II) and Cr(VI) ions, respectively. Because of the fast adsorption kinetics, high removal capacity and excellent regeneration, stability, and reusability, the ND-CPC is proposed as a highly efficient remediation adsorbent for the solid-phase removal of Pb(II), Hg(II), and Cr(VI) from contaminated water.
Collapse
Affiliation(s)
- Ayyob
M. Bakry
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Fathi S. Awad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Julian A. Bobb
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Samy El-Shall
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
26
|
Feng X, Yu Z, Long R, Li X, Shao L, Zeng H, Zeng G, Zuo Y. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117525] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Viltres H, López YC, Gupta NK, Leyva C, Paz R, Gupta A, Sengupta A. Functional metal-organic frameworks for metal removal from aqueous solutions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1839909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Herlys Viltres
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Yeisy C. López
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
- Laboratorio De Bioninorgánica, Facultad De Química, Universidad De La Habana, Havana, Cuba
| | - Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Carolina Leyva
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Roxana Paz
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Anjali Gupta
- Department of Chemistry, Dayalbagh Educational Institute, Agra, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Center, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
28
|
Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications. Polymers (Basel) 2020; 12:polym12051104. [PMID: 32413965 PMCID: PMC7285363 DOI: 10.3390/polym12051104] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022] Open
Abstract
Metal organic frameworks (MOFs) are porous crystalline materials that can be designed to act as selective adsorbents. Due to their high porosity they can possess very high adsorption capacities. However, overcoming the brittleness of these crystalline materials is a challenge for many industrial applications. In order to make use of MOFs for large-scale liquid phase separation processes they can be immobilized on solid supports. For this purpose, nanocellulose can be considered as a promising supporting material due to its high flexibility and biocompatibility. In this study a novel flexible nanocellulose MOF composite material was synthesised in aqueous media by a novel and straightforward in situ one-pot green method. The material consisted of MOF particles of the type MIL-100(Fe) (from Material Institute de Lavoisier, containing Fe(III) 1,3,5-benzenetricarboxylate) immobilized onto bacterial cellulose (BC) nanofibers. The novel nanocomposite material was applied to efficiently separate arsenic and Rhodamine B from aqueous solution, achieving adsorption capacities of 4.81, and 2.77 mg g−1, respectively. The adsorption process could be well modelled by the nonlinear pseudo-second-order fitting.
Collapse
|
29
|
Zhang G, Wang T, Xu Z, Liu M, Shen C, Meng Q. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption. Chem Commun (Camb) 2020; 56:11283-11286. [DOI: 10.1039/d0cc04265j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-quality amino-functionalized Ti3C2Tx MXene (alk-MXene-NH2) nanosheets were successfully synthesized by a facile alkalization-grafting modification for lead adsorption.
Collapse
Affiliation(s)
- Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering
- Center for Membrane and Water Science &Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Tiecheng Wang
- Institute of Oceanic and Environmental Chemical Engineering
- Center for Membrane and Water Science &Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering
- Center for Membrane and Water Science &Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Minmin Liu
- Institute of Oceanic and Environmental Chemical Engineering
- Center for Membrane and Water Science &Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chong Shen
- College of Chemical and Biological Engineering
- State Key Laboratory of Chemical Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qin Meng
- College of Chemical and Biological Engineering
- State Key Laboratory of Chemical Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|