1
|
Li D, Gao MY, Deng CH, Li GB, Qin SJ, Yang QY, Song BQ. Cross-Linking CdSO 4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402523. [PMID: 38747010 DOI: 10.1002/smll.202402523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Indexed: 10/04/2024]
Abstract
A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.
Collapse
Affiliation(s)
- Dan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Shao-Jie Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
2
|
Sugamata K, Zhang Y, Amanokura N, Shirai A, Minoura M. Alkoxy-Functionalized Hydroxamate/Zinc Metal-Organic Frameworks and the Effects of Substituents and Acid Addition on Their Structures. Inorg Chem 2024; 63:2454-2459. [PMID: 38276883 DOI: 10.1021/acs.inorgchem.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single crystals of alkoxy-functionalized hydroxamate/zinc metal-organic frameworks (MOFs) were obtained by fixating the hydroxamate moiety via intramolecular hydrogen bonding. The resulting MOF structures depend on the steric demand of the alkoxy groups, whereby the incorporation of bulky isopropyl groups affords porous hydroxamate/zinc MOFs. The topological structures of the isopropyl-substituted MOFs could be controlled by adding acid.
Collapse
Affiliation(s)
- Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yanhua Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsuki Amanokura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Akihiro Shirai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
3
|
Zhang P, Ma S, Zhang Y, He C, Hu T. Enhancing CO 2/N 2 and CH 4/N 2 separation performance by salt-modified aluminum-based metal-organic frameworks. Dalton Trans 2024. [PMID: 38247311 DOI: 10.1039/d3dt03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The energy-saving separation of CO2/N2 and CH4/N2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)2, Zn(BF4)2 and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)2-), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)2, MOF-253@Zn(BF4)2 and MOF-253@ZnSiF6) for CO2 and CH4 were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol-1) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N2 (1/4) and CH4/N2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Sai Ma
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Yujuan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Chaohui He
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Tuoping Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| |
Collapse
|
4
|
Zhang XY, Shi WJ, Wang GD, Hou L, Wang YY. One Co-MOF with F Active Sites for Separation of C 2H 2 from CO 2, C 2H 4, and CH 4. Inorg Chem 2023; 62:16574-16581. [PMID: 37753782 DOI: 10.1021/acs.inorgchem.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Separating acetylene (C2H2) from other light hydrocarbons and carbon dioxide (CO2) mixtures under mild conditions poses significant challenges due to the remarkably similar properties between C2H2 and those gases. For the goal of C2H2 separation, a F-functionalized organic linker, H2F-PyIP = 2-fluorine-5-(4-pyridyl)isophthalic acid, was designed, and the corresponding metal-organic framework (MOF), {[Co2(F-PyIP)2DMF]·4H2O}n (1), was constructed. The MOF with open channels decorated by the active sites of the F groups revealed the exceptional C2H2 uptake and selectivity over CO2, C2H4, and CH4. The breakthrough experiments with different molar ratios of C2H2-C2H4, C2H2-CO2, and other gas mixtures further verified superior separation capacity of the MOF. In particular, the dynamic separation time intervals for gas mixtures (C2H2/CO2 = 1:1, 1:5, 1:10, and 1:20) fell in the range 30-44 min, highlighting the potential of the MOF for tackling the challenging C2H2/CO2 separation process.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Wang L, He QQ, Gao Q, Xu H, Zheng TF, Zhu ZH, Peng Y, Chen JL, Liu SJ, Wen HR. Controllable Synthesis of Tb III Metal-Organic Frameworks with Reversible Luminescence Sensing for Benzaldehyde Vapor. Inorg Chem 2023; 62:3799-3807. [PMID: 36808965 DOI: 10.1021/acs.inorgchem.2c04053] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Two novel lanthanide metal-organic frameworks (MOFs) with the formulas [Tb(bidc)(Hbidc)(H2O)]n (JXUST-20) and {[Tb3(bidc)4(HCOO)(DMF)]·solvents}n (JXUST-21) were synthesized based on 2,1,3-benzothiadiazole-4,7-dicarboxylic acid (H2BTDC) under solvothermal conditions. Interestingly, benzimidazole-4,7-dicarboxylic acid (H2bidc) was formed in situ using H2BTDC as the starting material. The self-assembly process of the targeted MOFs with different topological structures can be controlled by the solvents and concentration of the reactants. Luminescence experiments show that JXUST-20 and JXUST-21 exhibit strong yellow-green emission. JXUST-20 and JXUST-21 can selectively sense benzaldehyde (BzH) via a luminescence quenching effect with detection limits of 15.3 and 1.44 ppm, respectively. In order to expand the practical application of MOF materials, mixed-matrix membranes (MMMs) have been constructed by mixing targeted MOFs and poly(methyl methacrylate) in a N,N-dimethylformamide (DMF) solution, which can also be used for BzH vapor sensing. Therefore, the first case of MMMs derived from TbIII MOFs has been developed for the reversible detection of BzH vapor, providing a simple and efficient platform for the future detection of volatile organic compounds.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Qi-Qi He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Hui Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Teng-Fei Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Zi-Hao Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
6
|
Tang Y, Lu XM, Yang G, Wang YY. Paddle-Wheel-Shaped Porous Cu(II)-Organic Framework with Two Different Channels as an Absorbent for Methylene Blue. Inorg Chem 2023; 62:1735-1743. [PMID: 36656916 DOI: 10.1021/acs.inorgchem.2c04350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The destruction of the ecological environment caused by human activity and modern industrial development is so severe that the water environment has become seriously polluted. Therefore, the exploration of high-efficiency absorbents has become one of the hot topics to solve this issue. Herein, a porous metal-organic framework [Cu(L)]·2.5H2O·0.5DMF (1, DMF = N,N-dimethylformamide) was successfully constructed using a rigid N-heterocyclic 5-(4-(1H,3,4-triazol-1-yl)phenyl)isophthalic acid (H2L) ligand. In particular, its structure includes the classical paddle-wheel-shaped secondary building units and two 1D channels with diameters of 7.2 and 3.2 Å, respectively. Complex 1 shows great sorption performance for methylene blue (MB) with a maximum capacity of 589 mg·g-1. The various influence factors, including the time, dye concentration, adsorbent dosage, and the pH of the solution, are investigated respectively. Also, the adsorption process is more in line with the first-order kinetics and the Langmuir isothermal adsorption model. The strong electrostatic force and intermolecular forces are primarily responsible for the remarkable adsorption ability of MB.
Collapse
Affiliation(s)
- Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Xiang-Mei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an710127, P.R. China
| |
Collapse
|
7
|
Coban MB. A new 3D HoIII-organic framework constructed from 1,3,5-tris(4-carboxyphenyl)benzene and 1,10-phenanthroline: Crystal structure, morphological and solid state luminescence properties. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Vapor sorption behavior in heptazine-based MOF featuring a brick-shaped framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhang XJ, Chen DM. Microporous metal–organic framework with formate anion decorated pores for efficient C2H2/CO2 separation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Pal SC, Ahmed R, Manna AK, Das MC. Potential of a pH-Stable Microporous MOF for C 2H 2/C 2H 4 and C 2H 2/CO 2 Gas Separations under Ambient Conditions. Inorg Chem 2022; 61:18293-18302. [DOI: 10.1021/acs.inorgchem.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| | - Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Arun K. Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| |
Collapse
|
11
|
Liu ZQ, Jin HH, Xia HY, Chang JL, Zhang JF, Li XL. Structural diversity and luminescent sensing of metal-organic frameworks with 2,6-Di(1H-imidazol-1-yl) naphthalene ligands. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Shang L, Chen XL, Liu L, Cai M, Yan RK, Cui HL, Yang H, Wang JJ. Catalytic performance of MOFs containing trinuclear lanthanides clusters in the cycladdition reaction of CO2 and epoxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Ding L, Zou H, Lu J, Liu H, Wang S, Yan H, Li Y. Enhancing Proton Conductivity of Nafion Membrane by Incorporating Porous Tb-Metal-Organic Framework Modified with Nitro Groups. Inorg Chem 2022; 61:16185-16196. [PMID: 36173130 DOI: 10.1021/acs.inorgchem.2c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rigid carboxylate ligand with a nitro functional group was selected to coordinate with Tb(III) cation, and Tb-MOF ({[Tb4(L)4(OH)4(H2O)3]·8H2O}n, H2L = 2-nitroterephthalic acid) with large porous and excellent hydrophilicity was obtained successfully. The obtained Tb-MOF was filled into the Nafion matrix to improve its proton conduction performance. The Tb-MOF/Nafion composite membrane was characterized by PXRD, IR, and thermogravimetry (TG) and for water uptake, area swelling, and proton conductivity. The activity energy, Ea, value of the composite membrane, which is a very important factor affecting the proton conduction performance of the membrane, was fitted and calculated. It was revealed that Tb-MOF can improve the proton conductivities of composite membranes, and the improvement degree and Ea value were both affected by Tb-MOF content. When Tb-MOF content was 5%, the proton conductivity of the composite membrane was 1.53 × 10-2 S·cm-1 at 100% RH and 80 °C, which is 1.81 times that of the pure Nafion membrane. A MOF containing a nitro functional group was first doped into Nafion in this study and exhibited excellent performance for improving composite membrane proton conductivity. This study will provide a valuable reference for designing different functionalized MOFs to promote the proton conductivities of proton exchange membranes.
Collapse
Affiliation(s)
- Li Ding
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Huiqi Zou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, PR China
| |
Collapse
|
14
|
Lu TT, Fan YY, Wang XN, Wang Q, Li B. A microporous chromium-organic framework fabricated via solvent-assisted metal metathesis for C 2H 2/CO 2 separation. Dalton Trans 2022; 51:11658-11664. [PMID: 35822599 DOI: 10.1039/d2dt01546c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Removal of CO2 or C2H4 from C2H2 is still a challenging task due to their similar physical-chemical properties. Here, a bifunctional ligand decorated with amino and sulfoxide groups, 5',5''''-sulfonylbis (2'-amino-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid) (H4L), was employed to construct a new microporous iron-organic framework (Fe-MOF) with the formula [(Fe3O)(L)1.5(H2O)3]n. This MOF can serve as a parent structure to obtain the isostructural Cr-MOF by solvent-assisted metal metathesis. Furthermore, the gas adsorption and separation performance of these two MOFs were systematically investigated. Compared to Fe-MOF, Cr-MOF shows a moderately higher CO2, C2H2 and C2H4 uptake capacity. Additionally, Cr-MOF can selectively adsorb C2H2 over CO2 and C2H4. The separation potential towards C2H2/C2H4 and C2H2/CO2 was further established via IAST calculations of mixture adsorption equilibrium. IAST selectivity values of Cr-MOF are 3.4 for C2H2/C2H4 and 6.9 for C2H2/CO2 at 298 K and initial pressure, indicating its potential C2H2 separation ability.
Collapse
Affiliation(s)
- Ting-Ting Lu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Ying-Yi Fan
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Xiao-Ning Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Qiang Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei, 430200, P. R. China.
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
| |
Collapse
|
15
|
Liu J, Xue J, Yang GP, Dang LL, Ma LF, Li DS, Wang YY. Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zhai L, Guo L, Shi M, Mo Y, Che W, Niu Y. Metal-induced different structures and properties of two coordination polymers based on a Semi-flexible carboxylic ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Lv HJ, Zhang JW, Jiang YC, Li SN, Hu MC, Zhai QG. Micropore Regulation in Ultrastable [Sc 3O]-Organic Frameworks for Acetylene Storage and Purification. Inorg Chem 2022; 61:3553-3562. [PMID: 35148476 DOI: 10.1021/acs.inorgchem.1c03562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High storage capacity, high separation selectivity, and high structure stability are essential for an idea gas adsorbent. However, it is not easy to achieve all three at the same time, even for the promising metal-organic framework (MOF) adsorbents. We demonstrate herein that robust [Sc3O]-organic frameworks could be regulated by a micropore combination strategy for high-performance acetylene adsorption. Under the same solvent system with formic acid as a modulator, similar tritopic ligands extend [Sc3O(COO)6] trigonal-prismatic clusters to generate SNNU-5-Sc and SNNU-150-Sc adsorbents. Notably, the two Sc-MOFs can keep their architectures over 24 h in water at different pH values (2-12) or at 90 °C. Modulated by the linker symmetry, the final stacking metal-organic polyhedral cages produce open window sizes of about 10 Å for SNNU-5-Sc and 5 Å + 7 Å for SNNU-150-Sc. Due to such micropore combinations, SNNU-5-Sc exhibits a top-level C2H2 uptake of 211.2 cm3 g-1 (1 atm and 273 K) and SNNU-150-Sc shows high C2H2/CH4, C2H2/C2H4, and C2H2/CO2 selectivities of 80.65, 4.03, and 8.19, respectively, under ambient conditions. Dynamic breakthrough curves obtained on a fixed-bed column and grand canonical Monte Carlo (GCMC) simulations further support their prominent acetylene storage and purification performance. High framework stability, storage capacity, and separation selectivity make SNNU-5-Sc and SNNU-150-Sc ideal acetylene adsorbents in practical applications.
Collapse
Affiliation(s)
- Hong-Juan Lv
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Jian-Wei Zhang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, People's Republic of China
| | - Yu-Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Man-Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
18
|
Two supramolecular architectures of Ni-based complexes for magnetic properties and the luminescent sensitive detection of Fe3+ and Cr6+. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Ma LN, Zhang L, Zhang WF, Wang ZH, Hou L, Wang YY. Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO2 Catalytic Fixation. Inorg Chem 2022; 61:2679-2685. [DOI: 10.1021/acs.inorgchem.1c03821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Wan-Fang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an, 710069, People’s Republic of China
| |
Collapse
|
20
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|
21
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
22
|
Chen H, Zhang Z, Lv H, Liu S, Zhang X. Investigation on the catalytic behavior of a novel thulium-organic framework with a planar tetranuclear {Tm 4} cluster as the active center for chemical CO 2 fixation. Dalton Trans 2021; 51:532-540. [PMID: 34927659 DOI: 10.1039/d1dt03646g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, the exquisite combination of coplanar [Tm4(CO2)10(μ3-OH)2(μ2-HCO2)(OH2)2] clusters ({Tm4}) and structure-oriented functional BDCP5- leads to the highly robust nanoporous {Tm4}-organic framework {(Me2NH2)[Tm4(BDCP)2(μ3-OH)2(μ2-HCO2)(H2O)2]·7DMF·5H2O}n (NUC-37, H5BDCP = 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine). To the best of our knowledge, NUC-37 is the first anionic {Ln4}-based three-dimensional framework with embedded hierarchical microporous and nanoporous channels, among which each larger one is shaped by six rows of coplanar {Tm4} clusters and characterized by plentiful coexisting Lewis acid-base sites on the inner wall including open TmIII sites, Npyridine atoms, μ3-OH and μ2-HCO2. Catalytic experimental studies exhibit that NUC-37 possesses highly selective catalytic activity on the cycloaddition of epoxides with CO2 as well as high recyclability under gentle conditions, which should be ascribed to its nanoscale channels, rich bifunctional active sites, and stable physicochemical properties. This work offers an effective means for synthesizing productive cluster-based Ln-MOF catalysts by employing structure-oriented ligands and controlling the solvothermal reaction conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
23
|
Okayasu M, Sunakawa T, Ikeda M, Namikawa T, Hagura R, Kikkawa S, Hikawa H, Azumaya I. Size and Shape Manipulation of Channel Structures Assembled
Via
Saddle stacking of Tetrapodal Adamantanes Containing Aryl Butadiynyl Moieties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Misaki Okayasu
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Toshiki Sunakawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Mitsuru Ikeda
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Takaya Namikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Riho Hagura
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
24
|
Qin LZ, Xiong XH, Wang SH, Meng LL, Yan TA, Chen J, Zhu NX, Liu DH, Wei ZW. A Series of Functionalized Zirconium Metal-Organic Cages for Efficient CO 2/N 2 Separation. Inorg Chem 2021; 60:17440-17444. [PMID: 34756021 DOI: 10.1021/acs.inorgchem.1c02948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.
Collapse
Affiliation(s)
- Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shi-Han Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tong-An Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Da-Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Chen H, Zhang Z, Hu T, Zhang X. Nanochannel {InZn}-Organic Framework with a High Catalytic Performance on CO 2 Chemical Fixation and Deacetalization-Knoevenagel Condensation. Inorg Chem 2021; 60:16429-16438. [PMID: 34644055 DOI: 10.1021/acs.inorgchem.1c02262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rare combination of InIII 5p and ZnII 3d in the presence of a structure-oriented TDP6- ligand led to a robust hybrid material of {(Me2NH2)[InZn(TDP)(OH2)]·4DMF·4H2O}n (NUC-42) with the interlaced hierarchical nanochannels (hexagonal and cylindrical) shaped by six rows of undocumented [InZn(CO2)6(OH2)] clusters, which represented the first 5p-3d nanochannel-based heterometallic metal-organic framework. With respect to the multifarious symbiotic Lewis acid-base and Brønsted acid sites in the high porous framework, the catalytic performance of activated NUC-42a upon CO2 cycloaddition with styrene oxide was evaluated under solvent-free conditions with 1 atm of CO2 pressure, which exhibited that the reaction could be well completed at ambient temperature within 48 h or at 60 °C within 4 h with high yield and selectivity. Moreover, because of the acidic function of metal sites and a central free pyridine in the TDP6- ligand, deacetalization-Knoevenagel condensation of acetals and malononitrile could be efficiently facilitated by an activated sample of NUC-42a under lukewarm conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
26
|
Liu Z, Jin H, Liu R, Wang Z, Huang H. Design, Synthesis and Photoluminescence Sensing Property of a Ni‐Organic Material Achieved from 2,6‐Di(1
H
‐imidazol‐1‐yl) Naphthalene and Carboxylic Acid Ligands. ChemistrySelect 2021. [DOI: 10.1002/slct.202102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhi‐Qiang Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
- State Key Laboratory of Coordination Chemistry College of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Heng‐Hui Jin
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Ran‐Ran Liu
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Zhi‐Ping Wang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| | - Hui‐Hui Huang
- Anhui Province Key Laboratory of Functional Optical Electrical and Magnetic Materials College of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 P. R. China
| |
Collapse
|
27
|
Shabalin DA. Recent advances and future challenges in the synthesis of 2,4,6-triarylpyridines. Org Biomol Chem 2021; 19:8184-8204. [PMID: 34499071 DOI: 10.1039/d1ob01310f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
2,4,6-Triarylpyridines are key building blocks to access functional molecules that are used in the design of advanced materials, metal-organic frameworks, supramolecules, reactive chemical intermediates and drugs. A number of synthetic protocols to construct this heterocyclic scaffold have been developed to date, the most recent of which (2015-present) are included and discussed in the present review. An emphasis has been placed on the utility of each synthetic approach in view of the scope of aryl/hetaryl substituents, limitations and an outlook of each method to be used in applied sciences.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| |
Collapse
|
28
|
Bicalho HA, Donnarumma PR, Quezada-Novoa V, Titi HM, Howarth AJ. Remodelling a shp: Transmetalation in a Rare-Earth Cluster-Based Metal-Organic Framework. Inorg Chem 2021; 60:11795-11802. [PMID: 34314164 DOI: 10.1021/acs.inorgchem.1c01317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Postsynthetic modification of metal-organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized de novo. In this work, the rare-earth (RE) cluster-based MOF Y-CU-10 with shp topology was modified through transmetalation using a series of RE ions, including La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal exchange higher than 70% was observed, with reproducible results. All transmetalated materials were fully characterized and compared to the parent MOF Y-CU-10 with regard to crystallinity, surface area, and morphology. Additionally, single-crystal X-ray diffraction measurements were performed to provide further evidence of transmetalation occurring in the nonanuclear cluster nodes of the MOF.
Collapse
Affiliation(s)
- Hudson A Bicalho
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - P Rafael Donnarumma
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - Victor Quezada-Novoa
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|
29
|
Chen Y, Xiong Q, Wang Y, Du Y, Wang Y, Yang J, Li L, Li J. Boosting molecular recognition of acetylene in UiO-66 framework through pore environment functionalization. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ding HJ, Zhang Y, Wang X, Lin QY, Zhang SM, Yu MH, Chang Z, Bu XH. Defective Hierarchical Pore Engineering of a Zn-Ni MOF by Labile Coordination Bonding Modulation. Inorg Chem 2021; 60:5122-5130. [PMID: 33769042 DOI: 10.1021/acs.inorgchem.1c00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction and modulation of hierarchical pore structure in metal-organic frameworks (MOFs) has become a hot topic owing to the advantages of hierarchical pore MOFs (HP-MOFs) in matter storage and mass transfer related applications. Herein, we report the engineering of crystalline defect in a bimetallic MOF for the construction and tuning of HP-MOF. A microporous MOF system showing metal-center-dependent water stability, namely, {[M3F(bdc)3 tpt] (solvents)}n (M = Zn2+ and Ni2+, H2bdc = 1,4-benzenedicarboxylic acid, tpt = 2,4,6-tris(4-pyridyl)triazine), was utilized as a platform for the construction of HP-MOF. By tuning the Zn2+/Ni2+ ratio in the reactant, a bimetallic MOF with a highly tunable Zn2+/Ni2+ ratio could be obtained. The relatively labile Zn2+-based coordination bonding in the bimetallic MOF could be readily and targeted broken through water treatment for the engineering of crystalline defects-based hierarchical pore structure. The resultant HP-MOF reveals a dramatically increased pore volume with the presence of mesopore and macropore. In addition, the anionic framework of HP-MOF could be utilized for the selective adsorption of a cationic dye methylene blue, and a relatively high capacity (250 mg·g-1, five times compared with the pristine microporous MOF) could be achieved.
Collapse
Affiliation(s)
- Hao-Jing Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xi Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Qiu-Ying Lin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Regiocontrolled synthesis of 2,4,6-triarylpyridines from methyl ketones, electron-deficient acetylenes and ammonium acetate. Org Biomol Chem 2021; 19:2703-2715. [PMID: 33667288 DOI: 10.1039/d1ob00193k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel one-pot two-step approach for the synthesis of 2,4,6-triarylpyridines via t-BuOK/DMSO-promoted C-vinylation of a variety of methyl ketones with electron-deficient acetylenes (alkynones) followed by a cyclization of the in situ generated unsaturated 1,5-dicarbonyl species with ammonium acetate has been developed. This approach possesses competitive advantages such as high regioselectivity, available starting materials and the absence of transition-metal catalysts, oxidants and undesirable byproducts. A wide synthetic utility of the developed approach was demonstrated by the synthesis of trisubstituted, tetrasubstituted and fused pyridines.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | | | | | | |
Collapse
|
32
|
Chen H, Feng L, Zhang X, Gao ZY, Sun D. Robust Heterometallic CoIILaIII2–Organic Framework for the Highly Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. Inorg Chem 2021; 60:2878-2882. [DOI: 10.1021/acs.inorgchem.0c03537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, and Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, People’s Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People’s Republic of China
| |
Collapse
|
33
|
Li YZ, Wang GD, Ma LN, Hou L, Wang YY, Zhu Z. Multiple Functions of Gas Separation and Vapor Adsorption in a New MOF with Open Tubular Channels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4102-4109. [PMID: 33463146 DOI: 10.1021/acsami.0c21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separation or purification is one of the difficult problems in the petrochemical industry. To help solve the difficulty of separation or purification for C2H2/CO2 and C2Hn/CH4 in the chemical industry, we synthesized a new metal-organic framework (MOF), [Ni(dpip)]·2.5DMF·H2O (1), by a bipyridyl-substituted isophthalic acid ligand. The MOF includes two types of one-dimensional (1D) tubular channels with different sizes and porous environments. The unique tubular channels lead to not only remarkable gas sorption capacity of C2H4, C2H2, and CO2, but also good selectivity for C2H2/CH4, C2H2/CH4, CO2/CH4, and C2H2/CO2, as demonstrated by single-component sorption isotherm results, ideal adsorbed solution theory calculations, and dynamic breakthrough curves. Grand canonical Monte Carlo (GCMC) simulation reveals preferential adsorption sites in the MOF for CO2, C2H2, and C2H4. The MOF also exhibits an obvious size-selective absorption effect on vapor molecules.
Collapse
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
34
|
Liu S, Dong Q, Zhou Y, Wang S, Duan J. Pore engineering of metal-organic frameworks for ethylene purification. Dalton Trans 2020; 49:17093-17105. [PMID: 33196729 DOI: 10.1039/d0dt03279d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ethylene production is an important and direct indicator related to the development of the petrochemical industry in a country. However, the separation and purification of ethylene is an extremely energy-consuming process. In this review, the latest progress in the purification of ethylene using metal organic frameworks (MOFs), a new type of physical adsorbent, is summarized according to four classifications of pore engineering, including pore surface functionalization, molecular sieving, controlled framework softness and dynamic pore-dominated molecular diffusion. Finally, the current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemistry & Chemical Engineering, Shangqiu Normal University, Shangqiu 47600, China
| | | | | | | | | |
Collapse
|
35
|
Zhao J, Li Q, Zhu XC, Li J, Wu D. Highly Robust Tetranuclear Cobalt-Based 3D Framework for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4Separations. Inorg Chem 2020; 59:14424-14431. [PMID: 32946695 DOI: 10.1021/acs.inorgchem.0c02214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel noninterpenetrated tetranuclear cobalt(II)-based metal-organic framework, (NH4)2·[Co4(μ3-OH)2(ina)2(pip)3]·4EtOH·H2O (simplified as NbU-10·S), constructed by mix linkers was synthesized by a hydrothermal method. Interestingly, the presence of a hydrophobic benzene ring in the organic linker makes NbU-10·S exhibit high stability in high temperature and even in aqueous solution over a wide pH range of about 4-13. Magnetic studies showed that the tetranuclear cobalt(II) units in NbU-10·S show dominant antiferromangetic properties. However, in the absence of Lewis basic functional sites and open metal sites in the material, NbU-10 still displays high C2H2/CO2 and C2H2/C2H4 selectivity in ideal adsorbed solution theory calculations and dynamic breakthrough experiments. Moreover, density functional theory calculations were performed to identify the adsorption characteristics of different gas molecules.
Collapse
Affiliation(s)
- Junying Zhao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xin-Cheng Zhu
- Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jia Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
36
|
Li YZ, Wang GD, Lu YK, Hou L, Wang YY, Zhu Z. A Multi-Functional In(III)-Organic Framework for Acetylene Separation, Carbon Dioxide Utilization, and Antibiotic Detection in Water. Inorg Chem 2020; 59:15302-15311. [DOI: 10.1021/acs.inorgchem.0c02291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
37
|
Li Q, Wu N, Li J, Wu D. A Highly Connected Trinuclear Cluster Based Metal-Organic Framework for Efficient Separation of C 2H 2/C 2H 4 and C 2H 2/CO 2. Inorg Chem 2020; 59:13005-13008. [PMID: 32909426 DOI: 10.1021/acs.inorgchem.0c02101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the barriers for efficient gas separation is the trade-off between the selectivity and adsorption capacity. To address this issue, we synthesized an anionic trinuclear CoII based 3D MOF (NbU-8), which is characterized by an ultramicroporous building unit (UBU) and Lewis basic binding sites on the pore surfaces. Remarkably, the combination of the two strategies can synergistically enhance the C2H2 adsorption capacity (182.9 cm3/g at 298 K) and simultaneously achieve a high separation performance toward C2H2/C2H4 and C2H2/CO2 mixtures. Besides theoretical calculations, the separation efficiencies of C2H2/C2H4 and C2H2/CO2 are also demonstrated using breakthrough experiments. Density functional theory calculations have further confirmed the -OH groups and ultramicroporous building units play an important synergistic effect in efficiently capturing acetylene molecules.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Nana Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
38
|
Wu N, Li Q, Li J, Wu D, Li Y. 4-Connected Cobalt-Based 3D Framework with a High Affinity for Acetylene. Inorg Chem 2020; 59:9461-9464. [PMID: 32597662 DOI: 10.1021/acs.inorgchem.0c01168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 3D framework, [Copip]·(H2O)0.3 (NbU-11), was synthesized by a hydrothermal method. Although there are no open metal sites and Lewis basic adsorption sites, gas adsorption measurements and ideal adsorbed solution theory (IAST) calculations all reveal that NbU-11 shows a high affinity for acetylene (C2H2). Remarkably, the adsorption selectivity values predicted by IAST for equimolar binary C2H2/CH4 and C2H4/CH4 mixtures are up to 175.8 and 42.8 at 295 K and 1 bar, respectively. Moreover, gas mixture breakthrough tests confirm that NbU-11 exhibits moderately high separation selectivities for C2H2/CO2 and C2H2/C2H4 as well as excellent separation selectivities for C2H2/CH4 and C2H4/CH4. Such an excellent performance makes NbU-11 a promising adsorbent for C2H2 capture.
Collapse
Affiliation(s)
- Nana Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
39
|
Chen H, Fan L, Zhang X, Ma L. Nanocage-Based In III{Tb III} 2-Organic Framework Featuring Lotus-Shaped Channels for Highly Efficient CO 2 Fixation and I 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27803-27811. [PMID: 32462875 DOI: 10.1021/acsami.0c07061] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exquisite combination of independent 3p [In(CO2)4] units and 4f [Tb2(CO2)8] clusters in the presence of the designed hexatopic 2,4,6-tri(2,4-dicarboxyphenyl)pyridine ligand engenders one peculiar nanocaged In(III){Tb(III)}2-organic framework: ({(Me2NH2)[InTb2(HTDP)2]·3DMF·3H2O}n, designated as NUC-5), which features dual types of lotus-shaped channels along the [100] and [110] axes with related node windows of 5.3 × 6.8 and 12.1 × 9.2 Å2, respectively. To the best of our knowledge, except several coexisted 3p-4f In/Ln clusters of {In3Ln}- and {In3Ln2}-based metal-organic frameworks (MOFs), NUC-5 is one novel type of In/Ln heterometallic framework. In addition, its topology was an unprecedented 3D TAYZIC net with a Schläfli symbol of {4.462}{4.565}2{4.66.88}. Moreover, activated NUC-5 is proved to be one efficient adsorbent for CO2 and one recycled cycloaddition catalyst for the transformation of epoxides into related carbonates with high yields under mild conditions. Furthermore, the excellent reversible sorption performance for I2 in the volatilization phase or in cyclohexane solution with a maximum adsorption capacity of 609.1 mg/g (3.75 iodine molecules per unit cell) makes NUC-5 a promising adsorbent for radioactive products of 129I and 131I in the field of nuclear industry. This study provides one synthetic strategy that the original nature of MOFs could be enhanced by introducing some specific function-prompted inorganic subunits with the aid of predesigned supporting ligands.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|