1
|
Visinescu D, Shylin SI, Shova S, Novitchi G, Popescu DL, Alexandru MG. New cyanido-bridged iron(II) spin crossover coordination polymers with an unusual ladder-like topology: an alternative to Hofmann clathrates. Dalton Trans 2024; 53:9062-9071. [PMID: 38738339 DOI: 10.1039/d4dt00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Two new cyanido-bridged {FeIIMII} double chains were obtained by reacting cyanido anions [M(CN)4]2- with complex cations [FeII(tptz)]2+ (preformed in situ by mixing a hydrated tetrafluoroborate salt of iron(II) and a tptz ligand, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) having the general formula [FeII(tptz)MII(CN)4]·2H2O·CH3CN, where M = Pd (1) or Pt (2). Additionally, two molecular complexes formulated as [FeII(tptz)2][MII(CN)4]·4.25H2O, where M = Pd (3) or Pt (4), were subsequently obtained from the same reaction, as secondary products. Single crystal X-ray analysis revealed that 1 and 2 are isostructural and crystallize in the P-1 triclinic space group. Their structure consists of a double-chain with a ladder-like topology, in which cyanido-based [M(CN)4]2- metalloligands coordinate, through three CN- ligands and three [FeII(tptz)]2+ complex cations. Compounds 3 and 4 are also isostructural and crystallize in the P1̄ triclinic space group, and the X-ray structural data show the formation of [FeII(tptz)2]2+ and [MII(CN)4]2- ionic units interconnected through H-bonds and π⋯π stacking supramolecular interactions. The static DC magnetic measurements recorded in the temperature range of 2-300 K showed that 1 and 2 exhibit incomplete spin transition on cooling, which is also confirmed by single crystal XRD analysis and Mössbauer spectroscopy. Compounds 3 and 4 are diamagnetic, most likely due to the encapsulation of Fe(II) in a tight pocket formed by two tptz ligands that preserve the low-spin state in the temperature range of 2-400 K.
Collapse
Affiliation(s)
- Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, EMFL, CNRS 38042 Grenoble, France.
| | - Delia-Laura Popescu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd 4-12, Bucharest 030018, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
2
|
Wang J, Li Y, Wei RJ, Tang Z, Yao ZS, Tao J. Spin-Crossover Behaviors of Iron(II) Complexes Bearing Halogen Ligands in Solid State and Solution. Inorg Chem 2023; 62:1354-1361. [PMID: 36635894 DOI: 10.1021/acs.inorgchem.2c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Numerous Fe(II) spin-crossover (SCO) compounds have been developed in the past decades, while the reports on the SCO materials with halogen atoms acting as coordinating ligands remain rare. In this study, we synthesize three iron(II) halide complexes with a general formula of [FeII(Py5Me2)X]+ (Py5Me2 = 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine, X = Cl- or Br-) that undergo complete SCO transitions at near room temperature. The SCO properties of these compounds are investigated in detail by magnetic measurements, variable-temperature single-crystal X-ray diffractions, and Mössbauer spectra analyses. Because of the good stability of the coordination structures and suitable ligand-field strength, these compounds show robust spin transitions in both solid state and solution.
Collapse
Affiliation(s)
- Ju Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Yun Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, People's Republic of China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
3
|
Boniolo M, Hossain MK, Chernev P, Suremann NF, Heizmann PA, Lyvik ASL, Beyer P, Haumann M, Huang P, Salhi N, Cheah MH, Shylin SI, Lundberg M, Thapper A, Messinger J. Water Oxidation by Pentapyridyl Base Metal Complexes? A Case Study. Inorg Chem 2022; 61:9104-9118. [PMID: 35658429 PMCID: PMC9214691 DOI: 10.1021/acs.inorgchem.2c00631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The design of molecular
water oxidation catalysts (WOCs) requires
a rational approach that considers the intermediate steps of the catalytic
cycle, including water binding, deprotonation, storage of oxidizing
equivalents, O–O bond formation, and O2 release.
We investigated several of these properties for a series of base metal
complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl
ligand framework, of which some were reported previously to be active
WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane])
showed an appreciable catalytic activity with a turnover number (TON)
= 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82– system at
pH 8.0, but that activity is demonstrated to arise from the rapid
degradation in the buffered solution leading to the formation of catalytically
active amorphous iron oxide/hydroxide (FeOOH), which subsequently
lost the catalytic activity by forming more extensive and structured
FeOOH species. The detailed analysis of the redox and water-binding
properties employing electrochemistry, X-ray absorption spectroscopy
(XAS), UV–vis spectroscopy, and density-functional theory (DFT)
showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable
amount of a MIV state in our potential window (up to +2
V vs SHE). This inability was traced to (i) the preference for binding
Cl– or acetonitrile instead of water-derived species
in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor
ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs
are suggested. We scrutinize the water oxidation
activity for pentapyridyl
metal complexes [MII(Py5R)Cl]+ (M = Mn, Fe,
Co, Ni; R = OH, OMe). Analysis of their stability, redox, and water-binding
properties shows that the complexes are not able to reach high-valent
intermediate states and do not catalyze water oxidation in their molecular
form.
Collapse
Affiliation(s)
- Manuel Boniolo
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Md Kamal Hossain
- Synthetic Molecular Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Nina F Suremann
- Synthetic Molecular Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Philipp A Heizmann
- Synthetic Molecular Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Amanda S L Lyvik
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Paul Beyer
- Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ping Huang
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Nessima Salhi
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Sergii I Shylin
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Marcus Lundberg
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Anders Thapper
- Synthetic Molecular Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden.,Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|