1
|
Hong S, Liu W, Zhang C, Yang X. Atroposelective synthesis of axially chiral imidazo[1,2- a]pyridines via asymmetric multicomponent reaction. SCIENCE ADVANCES 2024; 10:eadr6135. [PMID: 39630913 PMCID: PMC11616709 DOI: 10.1126/sciadv.adr6135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Imidazo[1,2-a]pyridines are privileged heterocycles with diverse applications in medicinal chemistry; however, the catalytic asymmetric synthesis of these heterocyclic structures remains underexplored. Herein, we present an efficient and modular approach for the atroposelective synthesis of axially chiral imidazo[1,2-a]pyridines via an asymmetric multicomponent reaction. By utilizing a chiral phosphoric acid catalyst, the Groebke-Blackburn-Bienaymé reaction involving various 6-aryl-2-aminopyridines, aldehydes, and isocyanides gave access to a wide range of imidazo[1,2-a]pyridine atropoisomers with high to excellent yields and enantioselectivities. Extensive control experiments underscored the pivotal role of the remote hydrogen bonding donor on the substrates in achieving high stereoselectivity for these reactions. The versatile derivatizations of these atropisomeric products, especially their role as an analog of NOBINs and their facile conversion into unique 6,6-spirocyclic products, further emphasize the merits of this methodology.
Collapse
Affiliation(s)
| | | | - Chongyi Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Ashraf R, Zahoor AF, Ali KG, Nazeer U, Saif MJ, Mansha A, Chaudhry AR, Irfan A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Adv 2024; 14:14539-14581. [PMID: 38708111 PMCID: PMC11066739 DOI: 10.1039/d4ra01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The synthesis of dihydrobenzofuran scaffolds bears pivotal significance in the field of medicinal chemistry and organic synthesis. These heterocyclic scaffolds hold immense prospects owing to their significant pharmaceutical applications as they are extensively employed as essential precursors for constructing complex organic frameworks. Their versatility and importance make them an interesting subject of study for researchers in the scientific community. While exploring their synthesis, researchers have unveiled various novel and efficient pathways for assembling the dihydrobenzofuran core. In the wake of extensive data being continuously reported each year, we have outlined the recent updates (post 2020) on novel methodological accomplishments employing the efficient catalytic role of several transition metals to forge dihydrobenzofuran functionalities.
Collapse
Affiliation(s)
- Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
5
|
Arai N, Shibuya Y, Koguchi S, Yamamoto T. Halogen‐Substituted Mesoionic‐Carbene/Palladium Complexes for Catalytic Arylation of Aldehydes. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naoki Arai
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University 5 Senju-Asahi-cho, Adachi-ku Tokyo 120-8551 Japan
| | - Yuga Shibuya
- Graduate School of Science Tokai University 4-1-1 Kitakaname, Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Shinichi Koguchi
- Department of Chemistry Tokai University 4-1-1 Kitakaname, Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Tetsuya Yamamoto
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University 5 Senju-Asahi-cho, Adachi-ku Tokyo 120-8551 Japan
| |
Collapse
|
6
|
Maejima S, Yamaguchi E, Itoh A. Visible-Light-Induced Regioselective Functionalization of α-Olefin: Development of One-Pot Photo-Synthesis of C 3-Substituted Dihydrobenzofurans. Org Lett 2023; 25:1856-1861. [PMID: 36866934 DOI: 10.1021/acs.orglett.3c00335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A method for the catalytic regioselective synthesis of C3-substituted dihydrobenzofurans (DHBs) via [2 + 2] photocycloaddition of alkene and p-benzoquinone is developed. This method realizes the rapid synthesis of DHBs with readily available substrates and simple reaction conditions by using Lewis acid B(C6F5)3 and Lewis base P(o-tol)3 as a catalyst in combination with the classical Paternò-Büchi reaction.
Collapse
Affiliation(s)
- Saki Maejima
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
7
|
Zhu J, Li Z, Li J, Tian D, Xu R, Tan Z, Chen Z, Tang W. Enantioselective rhodium-catalyzed addition of arylboronic acids to N-heteroaryl ketones: synthesis of α-hydroxy acids. Chem Sci 2023; 14:1606-1612. [PMID: 36794198 PMCID: PMC9906643 DOI: 10.1039/d2sc05907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
The enantioselective addition of arylboronic acids to N-heteroaryl ketones provides a convenient access to chiral α-heteroaryl tertiary alcohols, yet addition reactions of this type have been challenging due to catalyst deactivation. In this report, an efficient rhodium-catalyzed addition of arylboronic acids to N-heteroaryl ketones is established, affording a variety of valuable α-heteroaryl alcohols with excellent functional group compatibility. The employment of the WingPhos ligand containing two anthryl groups is crucial for this transformation. In particular, a range of chiral benzoxazolyl-substituted tertiary alcohols were formed with excellent ee values and yields by employing a Rh loading as low as 0.3 mol%, which can serve as a practical protocol to furnish a series of chiral α-hydroxy acids after hydrolysis.
Collapse
Affiliation(s)
- Jinbin Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Zhenyue Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Jiaqi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Duanshuai Tian
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Ronghua Xu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Zhiyong Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| |
Collapse
|
8
|
Cycloaddition of propylene oxide and carbon dioxide using CoMn2O4 nanoparticles supported onto dendritic fibrous nanosilica. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Dapkekar AB, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent Advances Towards the Synthesis of Dihydrobenzofurans and Dihydroisobenzofurans. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Gedu Satyanarayana
- Indian Institute of Technology Hyderabad Chemistry KandiSangareddy District 502 285 Hyderabad INDIA
| |
Collapse
|
10
|
Aribi-Zouioueche L, Merabet-Khelassi M, Braïa N, Toffano M. Practical access to (S)-heterocyclic aromatic acetates via CAL-B/Na2CO3-deacylation and Mitsunobu reaction protocol. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Louisa Aribi-Zouioueche
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Mounia Merabet-Khelassi
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Nabila Braïa
- Ecocompatible Asymmetric Catalysis Laboratory (LCAE), Badji Mokhtar Annaba-University, Annaba, Algeria
| | - Martial Toffano
- Equipe de Catalyse Moléculaire-ICMMO Bât 420. Université PARIS- SACLAY, Orsay, France
| |
Collapse
|
11
|
Imidazolium ionic liquid functionalized nano dendritic CuAl2O4 for visible light-driven photocatalytic degradation of dye pollutant. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Cai Y, Ruan L, Rahman A, Shi S. Fast Enantio‐ and Chemoselective Arylation of Ketones with Organoboronic Esters Enabled by Nickel/N‐Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lin‐Xin Ruan
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Abdul Rahman
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
13
|
Cai Y, Ruan L, Rahman A, Shi S. Fast Enantio‐ and Chemoselective Arylation of Ketones with Organoboronic Esters Enabled by Nickel/N‐Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2021; 60:5262-5267. [DOI: 10.1002/anie.202015021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yuan Cai
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lin‐Xin Ruan
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Abdul Rahman
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
14
|
Okuda Y, Nagaoka M, Yamamoto T. Bulky
N
‐Heterocyclic‐Carbene‐Coordinated Palladium Catalysts for 1,2‐Addition of Arylboron Compounds to Carbonyl Compounds. ChemCatChem 2020. [DOI: 10.1002/cctc.202001464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuta Okuda
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
| | - Masahiro Nagaoka
- Organometallic Chemistry Group Sagami Chemical Research Institute Hayakawa 2743-1 Ayase Kanagawa 252-1193 Japan
| | - Tetsuya Yamamoto
- Department of Materials Science and Engineering Graduate School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
- Department of Applied Chemistry School of Engineering Tokyo Denki University Senju-Asahi-cho 5 Adachi-ku Tokyo 120-8551 Japan
| |
Collapse
|