1
|
Highlighting Recent Crystalline Engineering Aspects of Luminescent Coordination Polymers Based on F-Elements and Ditopic Aliphatic Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123830. [PMID: 35744946 PMCID: PMC9230055 DOI: 10.3390/molecules27123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Three principal factors may influence the final structure of coordination polymers (CPs): (i) the nature of the ligand, (ii) the type and coordination number of the metal center, and (iii) the reaction conditions. Further, flexible carboxylate aliphatic ligands have been widely employed as building blocks for designing and synthesizing CPs, resulting in a diverse array of materials with exciting architectures, porosities, dimensionalities, and topologies as well as an increasing number of properties and applications. These ligands show different structural features, such as torsion angles, carbon backbone number, and coordination modes, which affect the desired products and so enable the generation of polymorphs or crystalline phases. Additionally, due to their large coordination numbers, using 4f and 5f metals as coordination centers combined with aliphatic ligands increases the possibility of obtaining different crystal phases. Additionally, by varying the synthetic conditions, we may control the production of a specific solid phase by understanding the thermodynamic and kinetic factors that influence the self-assembly process. This revision highlights the relationship between the structural variety of CPs based on flexible carboxylate aliphatic ligands and f-elements (lanthanide and actinides) and their outstanding luminescent properties such as solid-state emissions, sensing, and photocatalysis. In this sense, we present a structural analysis of the CPs reported with the oxalate ligand, as the one rigid ligand of the family, and other flexible dicarboxylate linkers with –CH2– spacers. Additionally, the nature of the luminescence properties of the 4f or 5f-CPs is analyzed, and finally, we present a novel set of CPs using a glutarate-derived ligand and samarium, with the formula [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2] (β-Sm).
Collapse
|
2
|
Slyusarchuk VD, Hawes CS. Fecht's acid revisited: a spirocyclic dicarboxylate for non-aromatic MOFs. CrystEngComm 2022. [DOI: 10.1039/d1ce01542g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first of a new class of spiroalkane-derived MOF linkers shows aromaticity is not a prerequisite for ligand design in porous materials.
Collapse
Affiliation(s)
| | - Chris S. Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK
| |
Collapse
|
4
|
Leroy C, Bonhomme-Coury L, Gervais C, Tielens F, Babonneau F, Daudon M, Bazin D, Letavernier E, Laurencin D, Iuga D, Hanna J, Smith M, Bonhomme C. A novel multinuclear solid-state NMR approach for the characterization of kidney stones. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:653-671. [PMID: 37905220 PMCID: PMC10539836 DOI: 10.5194/mr-2-653-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 11/01/2023]
Abstract
The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (n = 1 , 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the 1 H , 13 C , 31 P and 31 P nuclei, with the 1 H and 13 C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1 H NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding 31 P MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.
Collapse
Affiliation(s)
- César Leroy
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Laure Bonhomme-Coury
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christel Gervais
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frederik Tielens
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- General Chemistry (ALGC) – Materials Modelling Group, Vrije
Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050
Brussels, Belgium
| | - Florence Babonneau
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michel Daudon
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, UMR CNRS 8000, Bâtiment 350,
Université Paris Saclay, 91405 Orsay CEDEX, France
- Laboratoire de Physique des Solides, UMR CNRS 8502, Bâtiment 510, Université Paris-Sud, 91405 Orsay CEDEX, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Danielle Laurencin
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Dinu Iuga
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - Mark E. Smith
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christian Bonhomme
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Amombo
Noa FM, Svensson Grape E, Brülls SM, Cheung O, Malmberg P, Inge AK, McKenzie CJ, Mårtensson J, Öhrström L. Metal-Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. J Am Chem Soc 2020; 142:9471-9481. [PMID: 32312041 PMCID: PMC7304877 DOI: 10.1021/jacs.0c02984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/28/2022]
Abstract
Nine metal-organic frameworks have been prepared with the hexagon-shaped linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene (H6cpb) by solvothermal reactions in dimethylformamide (dmf) or dimethylacetamide (dmac) with acetic acid or formic acid as modulators: [Bi2(cpb)(acetato)2(dmf)2]·2dmf CTH-6 forms a rtl-net; 2(H2NMe2)[Cu2(cpb)] CTH-7 forms a kgd-net; [Fe4(cpb)(acetato)2(dmf)4] CTH-8 and [Co4(cpb)(acetato)2(dmf)4] CTH-9 are isostructural and form yav-nets; 2(HNEt3)[Fe2(cpb)] CTH-10 and the two polymorphs of 2(H2NMe2)[Zn2(cpb)]·1.5dmac, Zn-MOF-888 and CTH-11, show kgd-nets; [Cu2(cpb)(acetato)2(dmf)2]·2dmf, CTH-12, forms a mixed coordination and hydrogen-bonded sql-net; and 2(H2NMe2)[Zn2(cpb)] CTH-13, a similarly mixed yav-net. Surface area values (Brunauer-Emmett-Teller, BET) range from 34 m2 g-1 for CTH-12 to 303 m2 g-1 for CTH-9 for samples activated at 120 °C in dynamic vacuum. All compounds show normal (10-fold higher) molar CO2 versus N2 uptake at 298 K, except the 19-fold CO2 uptake for CTH-12 containing Cu(II) dinuclear paddle-wheels. We also show how perfect hexagons and triangles can combine to a new 3D topology laf, a model of which gave us the idea of foldable network topologies, as the laf-net can fold into a 2D form while retaining the local geometry around each vertex. Other foldable nets identified are cds, cds-a, ths, sqc163, clh, jem, and tfc covering the basic polygons and their combinations. The impact of this concept on "breathing" MOFs is discussed. I2 sorption, both from gas phase and from MeOH solution, into CTH-7 were studied by time of flight secondary ion mass spectrometry (ToF-SIMS) on dried crystals. I2 was shown to have penetrated the crystals, as layers were consecutively peeled off by the ion beam. We suggest ToF-SIMS to be a method for studying sorption depth profiles of MOFs.
Collapse
Affiliation(s)
- Francoise M. Amombo
Noa
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Erik Svensson Grape
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Steffen M. Brülls
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ocean Cheung
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Per Malmberg
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - A. Ken Inge
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Christine J. McKenzie
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jerker Mårtensson
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Lars Öhrström
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|