1
|
Gopal Agrawal H, Dubey A, Mondal D, Kumar Mishra A. Subtle Molecular Engineering around Flavin core for Stimuli-Responsive Solid-State Luminophore. Chem Asian J 2025; 20:e202401099. [PMID: 39626001 DOI: 10.1002/asia.202401099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The present manuscript discusses the design, synthesis, and stimuli-responsive solid-state properties of two novel flavin analogues, Phenyl Flavin (PhFl) and Pyridinyl Flavin (PyFl), featuring covalently linked phenyl and pyridinyl rings to isoalloxazine. Stimuli-responsive properties of PhFl and PyFl were examined, where PyFl displayed more pronounced and reversible emissive behavior in the solid state in response to external stimuli. To elucidate the mechanism underlying the mode for switching behavior, single crystal- and powder-X-ray diffraction, as well as differential scanning calorimetry studies, were performed. Furthermore, a simple dip-in method was used to demonstrate its usage as ink free rewritable material.
Collapse
Affiliation(s)
- Harsha Gopal Agrawal
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502285, India
| | - Adamya Dubey
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502285, India
| | - Dipayan Mondal
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502285, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502285, India
| |
Collapse
|
2
|
Ravi S, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Deep blue emitting dual state fluorescent triphenylamine-dicyclohexylurea derivative: Multi-stimuli responsive fluorescence switching and methanol/water sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124303. [PMID: 38636429 DOI: 10.1016/j.saa.2024.124303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
A new deep blue emissive organic fluorophore (N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(diphenylamino)benzamide (NCDPB)) was designed and synthesized, which showed strong fluorescence both in solution and solid-state. Solid-state structural analysis of NCDPB revealed non-planar twisted molecular conformation with extended hydrogen bonding between the amide functionalities. The propeller shaped triphenylamine (TPA) and non-planar cyclohexyl unit prevented close π…π stacking and produced strong deep blue emission in the solid state (λmax = 400 nm, quantum yield (Φf) = 12.6 %). NCDPB also exhibited strong solvent polarity dependent tunable emission in solution (λmax = 402-462 nm, Φf = 1.15 (compared to quinine sulphate)). NCDPB showed reversible fluorescence switching between two fluorescence states upon mechanical crushing and heating/solvent exposure. Mechanical crushing caused red shifting of fluorescence from 400 to 447 nm and heating/solvent exposure reversed the fluorescence. Further, NCDPB also displayed off-on reversible/self-reversible fluorescence switching upon exposure to trifluoracetic acid (TFA) and NH3. The repeated fluorescence switching cycles indicated high reversibility without any significant change of fluorescence intensity. The drastically different fluorescence of NCDPB in CH3OH and EtOH was utilized to distinguish them and monitor CH3OH contamination in ethanol and benzene. It showed limit of detection (LOD) of methanol up to 0.25 % and 7 % in benzene and ethanol, respectively. The water sensitive fluorescence modulation of NCDPB in organic solvents was used to sensing water contamination in common organic solvents. Thus, integration of twisted TPA with H-bonding urea produced dual state emitting organic fluorophore with multi-responsive fluorescence switching and solvent sensing.
Collapse
Affiliation(s)
- Sasikala Ravi
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramanian Karthikeyan
- Department of Chemistry, Khadir Mohideen College (Affiliated to Bharathidasan University), Adirampattinam 614701, Tamil Nadu, India
| | - Mehboobali Pannipara
- Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia; Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea.
| | | |
Collapse
|
3
|
Pandey V, Pandey T. Understanding the bio-crystallization: An insight to therapeutic relevance. Biophys Chem 2024; 308:107216. [PMID: 38479205 DOI: 10.1016/j.bpc.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
In the realm of biomedical engineering and materials science, the synthesis of biomaterials plays a pivotal role in advancing therapeutic strategies for regeneration of tissues. The deliberate control of crystallization processes in biomaterial synthesis has emerged as a key avenue for tailoring the properties of these materials, enabling the design of innovative solutions for a wide array of medical applications. This review delves into the interplay between controlled crystallization and biomaterial synthesis, exploring its multifaceted applications in the therapeutic domains. The investigation encompasses a wide spectrum of matrices, ranging from small molecules to large biomolecules, highlighting their unique contributions in modulating crystallization processes. Furthermore, the review critically assesses the analytical techniques and methodologies employed to probe and characterize the depths of crystallization dynamics. Advanced imaging, spectroscopic, and computational tools are discussed in the context of unraveling the intricate mechanisms governing nucleation and crystallization processes within the organic matrix. Finally we delve in the applications of such advance material in therapeutics of hard and soft tissues.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Nath J, Baruah JB. E- or Z-Isomers Arising from the Geometries of Ligands in the Mercury Complex of 2-(Anthracen-9-ylmethylene)- N-phenylhydrazine Carbothioamide. ACS OMEGA 2023; 8:42827-42839. [PMID: 38024736 PMCID: PMC10653070 DOI: 10.1021/acsomega.3c05806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
An anionic mercury(II) complex of 2-(anthracen-9-ylmethylene)-N-phenylhydrazine carbothioamide (HATU) and two isomers of a neutral mercury(II) complex of the anion of the same ligand (ATU) were reported. The anionic complex [Hg(HATU)2Cl2]·CH2Cl2 had a monodentate HATU ligand (a neutral form of the ligand) and chloride ligands. The two conformational isomers were of the neutral mercury(II) complex Hg(ATU)2·2DMF. The two isomers were from the E or Z geometry of the ligands across the conjugated C=N-N=C-N scaffold of the coordinated ligand. The two isomers of the complex were independently prepared and characterized. The spectroscopic properties of the isomers in solution were studied by 1H NMR as well as fluorescence spectroscopy. Facile conversion of the E-isomer to the Z-isomer in solution was observed. Density functional theory (DFT) calculations revealed that the Z-isomer of the complex was stable compared to the E-isomer by an energy of 14.35 kJ/mol; whereas, E isomer of the ligand was more stable than Z isomer by 8.37 KJ/mol. The activation barrier for the conversion of the E-isomer to the Z-isomer of the ligand was 167.37 kJ/mol. The role of the mercury ion in the conversion of the E-form to the Z-form was discussed. The mercury complex [Hg(HATU)2Cl2]·CH2Cl2 had the E-form of the ligand. Distinct photophysical features of these mercury complexes were presented.
Collapse
Affiliation(s)
- Jitendra Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam India
| | - Jubaraj B. Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam India
| |
Collapse
|
5
|
Notash B, Farhadi Rodbari M, Kubicki M. Water Content-Controlled Formation and Transformation of Concomitant Pseudopolymorph Coordination Polymers. ACS OMEGA 2023; 8:13140-13152. [PMID: 37065012 PMCID: PMC10099119 DOI: 10.1021/acsomega.3c00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Two concomitant pseudopolymorph coordination polymers {[Cd2L2(OAc)4]·2DMSO} n (1) and {[CdL(OAc)2]·2.75H2O} n (2) were synthesized by self-assembly of 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L) and cadmium acetate in DMSO. Single-crystal X-ray diffraction confirmed that 1D ladder structural motifs exist for pseudopolymorphs 1 and 2 which contain DMSO and water guest molecules, respectively. Our study illustrated the active role of solvent water content in obtaining compound 2. We find that the presence of water as an impurity in the DMSO solvent creates the possibility of formation of concomitant pseudopolymorph coordination polymers which is a unique event. Furthermore, our analyses showed the effect of environmental humidity on the transformation of unstable compound 1. 1D ladder pseudopolymorphic compound 1 could be transformed to guest-free 1D linear compound [CdL(OAc)2(H2O)] n (3') (the powder form of single crystals of 3) through a scarce case of water absorption from air. Also, the crystalline material of coordination polymer 3 was transformed to coordination polymer 2 through the dissolution-recrystallization structural transformation process in DMF or DMSO. Our study clarified that the amount of water in the reaction container can control the formation of one of the compounds 2 or 3. In the presence of a significant amount of water, compound 3 (coordinated water) will be produced, whereas if a small amount of water is present, compound 2 (uncoordinated water) is prepared as an exclusive product.
Collapse
Affiliation(s)
- Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Mona Farhadi Rodbari
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Maciej Kubicki
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznanskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Gayathri P, Nantheeswaran P, Mariappan M, Karthikeyan S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Methoxy substituent facilitated wide solvatofluorochromism, white light emission, polymorphism and stimuli-responsive fluorescence switching in donor-π-acceptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121989. [PMID: 36323083 DOI: 10.1016/j.saa.2022.121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Introducing methoxy substituent into triphenylamine-acetophenone based donor-π-acceptor fluorophore, 3-(4-(diphenylamino)phenyl)-1-phenylprop-2-en-1-one (1), produced strong solvatofluorochromism including white light emission, fluorescent polymorphs and mechano-responsive fluorescence switching. The unsubstituted and methoxy substituted compounds displayed strong solvent polarity mediated tunable emission in the solution. Interestingly, 3-(4-(diphenylamino)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (2) and 3-(4-(diphenylamino)-2-methoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (3) showed single molecule white light emission in DMSO and ethanol, respectively. 1-3 exhibited strong green/yellow fluorescence in the solid-state (Quantum yield (Φf) = 10 to 23%). 2 produced fluorescent polymorphs (green (2-G) and yellow (2-Y). Single crystal structural analysis revealed that donor and acceptor phenyl units adopted coplanar conformation in 2-G and 3 whereas twisted molecular conformation in 1 and 2-Y. Further, 2-G exhibited π…π interactions facilitated isolated dimers whereas 2-Y showed well separated molecules in the crystal lattice. Aggregation induced emission (AIE) studies showed morphological transformation induced fluorescence tuning for 2. The intramolecular charge transfer (ICT) from TPA to acetophenone was confirmed by computational studies. Mechanofluorochromic (MFC) studies of 1 showed only slight reduction of intensity without modulating fluorescence wavelength significantly but 2 and 3 exhibited visible emissive colour change from yellow to green and vice versa by crushing and heating. Both 2 and 3 also exhibited self-reversible fluorescence switching that was confirmed by PXRD pattern. Thus, methoxy group introduction resulted in obtaining white light emitting fluorescence molecules in the solution state and self-reversible fluorescence switching materials.
Collapse
Affiliation(s)
- Parthasarathy Gayathri
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | | | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Subramanian Karthikeyan
- Department of Chemistry, Khadir Mohideen College (Affiliated to Bharathidasan University), Adirampattinam, Tamil Nadu, India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Republic of Korea.
| | | |
Collapse
|
7
|
Saha BK, Nath NK, Thakuria R. Polymorphs with Remarkably Distinct Physical and/or Chemical Properties. CHEM REC 2023; 23:e202200173. [PMID: 36166697 DOI: 10.1002/tcr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.
Collapse
Affiliation(s)
- Binoy K Saha
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya 793003, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
8
|
Chen Z, Deng DD, Pu S. Recent advances in aggregation-induced emission (AIE)-active tetraphenylethylene-modified luminophores with mechanochromic luminescence characteristics. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Supramolecular aggregation properties of naphthalimide-decorated imino- Naphthol and imino-naphthalene based on fluorescent materials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Mu X, Yu J, Leng X, Li Y. Syndioselective coordination (Co)polymerization of triphenylamine-substituted styrenes via a scandium catalyst system. Polym J 2022. [DOI: 10.1038/s41428-022-00628-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Gayathri P, Ravi S, Karthikeyan S, Pannippara M, Al-Sehemi AG, Moon D, Anthony SP. Pyridine Nitrogen Position Controlled Molecular Packing and Stimuli-responsive Solid-State Fluorescence Switching: Supramolecular Complexation Facilitated Turn-on Fluorescence. CrystEngComm 2022. [DOI: 10.1039/d1ce01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophore structure and supramolecular interactions plays important role on the molecular conformation and packing in the solid state that strongly influenced on the solid-state fluorescence properties. Herein, we report the...
Collapse
|
12
|
Deka P, Patir K, Rawal I, Ahmed S, Bora SR, Kalita DJ, Althubeiti K, Gogoi SK, Sarma P, Thakuria R. Solid-State Fluorescence of A Quasi-Isostructural Polymorphic Biphenyl Based Michael Addition Product. CrystEngComm 2022. [DOI: 10.1039/d2ce00425a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorphic materials have gained significant attention owing to their fascinating physicochemical properties. Herein, a biphenyl based Michael addition product (Compound A) with an active methylene group (dimedone) was synthesized. Compound...
Collapse
|
13
|
Nagarasu P, Kundu A, Thiruvenkatam V, Raghavaiah P, Anthony SP, Madhu V. Investigating the structure–fluorescence properties of tetraphenylethylene fused imidazole AIEgens: reversible mechanofluorochromism and polymer matrix controlled fluorescence tuning. CrystEngComm 2021. [DOI: 10.1039/d1ce00561h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of stimuli-responsive AIEgens of tetraphenylethylene (TPE) fused imidazole derivatives (1–7) were synthesized, and their substituent controlled fluorescence properties in the solid state were explored.
Collapse
Affiliation(s)
- Palaniyappan Nagarasu
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore – 641114
- India
| | - Anu Kundu
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Gandhinagar
- India
| | - Pallepogu Raghavaiah
- School of Chemical Sciences
- Department of Chemistry
- Central University of Karnataka
- Kalaburagi-585367
- India
| | | | - Vedichi Madhu
- Department of Applied Chemistry
- Karunya Institute of Technology and Sciences
- Coimbatore – 641114
- India
| |
Collapse
|
14
|
Gayathri P, Pannipara M, Al-Sehemi AG, Anthony SP. Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm 2021. [DOI: 10.1039/d1ce00317h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substitutional change and controlling intra and intermolecular interactions of ESIPT molecules resulted in realizing multifunctional fluorescence properties.
Collapse
Affiliation(s)
- Parthasarathy Gayathri
- Department of Chemistry
- School of Chemical & Biotechnology
- SASTRA Deemed University
- Thanjavur-613401
- India
| | - Mehboobali Pannipara
- Department of Chemistry
- King Khalid University
- Abha 61413
- Saudi Arabia
- Research center for Advanced Materials Science
| | - Abdullah G. Al-Sehemi
- Department of Chemistry
- King Khalid University
- Abha 61413
- Saudi Arabia
- Research center for Advanced Materials Science
| | | |
Collapse
|
15
|
Mu X, Li Y. Syndiospecific coordination (Co)polymerization of carbazole-substituted styrene derivatives using the scandium catalyst system. Polym Chem 2021. [DOI: 10.1039/d1py00896j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perfect syndiospecific polymerization of carbazole-substituted styrene derivatives was achieved using a rare-earth metal catalyst. Also copolymerization of FSt with styrene afforded copolymers with gradient sequence distributions and easily tunable incorporation rate.
Collapse
Affiliation(s)
- Xiaochun Mu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Jia J, Wu L. Halogen effect on enhanced mechanofluorochromic properties of AIE-active tetraphenylethylene-based acylhydrazone luminophores. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|