1
|
Gurbanov AV, Kuznetsov ML, Karmakar A, Aliyeva VA, Mahmudov KT, Pombeiro AJL. Halogen bonding in cadmium(II) MOFs: its influence on the structure and on the nitroaldol reaction in aqueous medium. Dalton Trans 2021; 51:1019-1031. [PMID: 34935834 DOI: 10.1039/d1dt03755b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A solvothermal reaction of Cd(II) with the dicarboxyl-functionalized arylhydrazone pro-ligands, 5-(2-(2,4,6-trioxotetrahydro-pyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L1) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)isophthalic acid (H3L2), or their halogen bond donor centre(s) decorated analogs 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L3) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), leads to the formation of known [Cd(H3L1)(H2O)2]n (1) and new {[Cd(HL2)(H2O)2(DMF)]·H2O}n (2), [Cd(H3L3)]n (3) and {[Cd2(μ-H2O)2(μ-H2L4)2(H2L4)2]·2H2O}n (4) coordination compounds, respectively. The aggregation of mononuclear units via Cd-OC and Cd-OH2 coordination and CAr-I⋯I types of intramolecular halogen bonds lead to a dinuclear tecton 4. Both CAr-I⋯O and CAr-I⋯I types of intermolecular halogen bonds play a fundamental role in the supramolecular architectures of the obtained metal-organic frameworks 3 and 4. Theoretical (DFT) calculations confirmed the presence of the CAr-I⋯O and CAr-I⋯I halogen bonds in 3 and 4 and allowed their characterisation. The formation of intermolecular noncovalent interactions between the attached iodine substituents to the hydrazone ligands and polar solvent (water or methanol) molecules promoted, at least in part, the solubility of the corresponding complexes (3 and 4), which act as homogeneous catalyst precursors in the Henry reaction between aldehydes and nitroethane. The corresponding β-nitroalkanol products were obtained in good yields (66-79%) and with good diastereoselectivity (threo/erythro ca. 72 : 28) in water at room temperature.
Collapse
Affiliation(s)
- Atash V Gurbanov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Vusala A Aliyeva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
2
|
Mahmudov KT, Huseynov FE, Aliyeva VA, Guedes da Silva MFC, Pombeiro AJL. Noncovalent Interactions at Lanthanide Complexes. Chemistry 2021; 27:14370-14389. [PMID: 34363268 DOI: 10.1002/chem.202102245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.
Collapse
Affiliation(s)
- Kamran T Mahmudov
- University of Lisbon Higher Technical Institute: Universidade de Lisboa Instituto Superior Tecnico, CQE, R., 1009 - 001, Lisbon, PORTUGAL
| | - Fatali E Huseynov
- Baku State University, Department of Ecology and Soil Sciences, AZERBAIJAN
| | | | | | | |
Collapse
|
3
|
Wagner B, Heine J. (15‐crown‐5)BiI
3
as a Building Block for Halogen Bonded Supramolecular Aggregates. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bettina Wagner
- Department of Chemistry and Material Sciences Center Philipps-Universität Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| | - Johanna Heine
- Department of Chemistry and Material Sciences Center Philipps-Universität Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| |
Collapse
|
4
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
5
|
Yang Q, Chi Z, Li Q, Scheiner S. Effect of carbon hybridization in C—F bond as an electron donor in triel bonds. J Chem Phys 2020; 153:074304. [DOI: 10.1063/5.0018950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Zongqing Chi
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|