1
|
Chaves Júnior JV, Ayala AP, Pontes DDL, de Souza FS, Aragão CFS. A Metformin-Ferulic Acid Salt with Improved Biopharmaceutical Parameters. J Pharm Sci 2023; 112:3120-3130. [PMID: 37451318 DOI: 10.1016/j.xphs.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Though ferulic acid presents great hypoglycemic potential, it possesses limited aqueous solubility, and low oral bioavailability. When associated with metformin, the first-choice drug in Type 2 diabetes treatment, FA demonstrates synergistic hypoglycemic effects, however, it also causes certain undesirable dose-related effects. This study aimed to develop a new ferulic acid - metformin multicomponent system, and incorporate it into a solid dosage form with improved biopharmaceutical parameters. A novel metformin: ferulate (1:1) salt (MFS) was produced, which was properly characterized using differing analytical techniques, including single crystal analysis. Also during the course of the study, a new polymorph of the metformin free base was observed. The MFS was obtained using solvent evaporation methods, which achieved high yields in reproducible process, as well as a 740-fold increase in ferulic acid aqueous solubility. The MFS tablets developed met quality control requirements for this dosage form, as well as revealing excellent performance in vitro dissolution tests, presenting dissolution efficiency values of 95.4 ± 0.5%. Additionally, physicochemical instability was not observed in a study at 40 °C for 3 months for both MFS powder and its tablet form. The MFS product developed is a promising candidate for further Type 2 diabetes clinical study.
Collapse
Affiliation(s)
- José Venâncio Chaves Júnior
- Pharmacy Department, Federal University of Rio Grande do Norte, 59010-115, Natal, Brazil; Pharmaceutical Sciences Department, Federal University of Paraíba, 58051-970, João Pessoa, Brazil.
| | | | - Daniel de Lima Pontes
- Institute of Chemistry, Federal University of Rio Grande do Norte, 59010-115, Natal, Brazil
| | - Fábio Santos de Souza
- Pharmaceutical Sciences Department, Federal University of Paraíba, 58051-970, João Pessoa, Brazil
| | | |
Collapse
|
2
|
Structural elucidation and cytotoxicity profile of neocuproine-Cu(II) and Cu(I)-based chemotherapeutic agents: Effect of picric acid-derived cocrystals. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Banerjee M, Nimkar K, Naik S, Patravale V. Unlocking the potential of drug-drug cocrystals - A comprehensive review. J Control Release 2022; 348:456-469. [PMID: 35691502 DOI: 10.1016/j.jconrel.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/17/2022]
Abstract
Intensive research subjected to the improvement of solubility and bioavailability of certain drugs has popularized the formation of cocrystals, wherein the desired drug is non-ionically bonded to a coformer by means of weak bonds. This paper addresses how crystal engineering of two compatible drug components can enhance the physicochemical and therapeutic properties of either or both of the drugs, resulting in drug-drug cocrystals, with pertinent examples. The paper also discusses the continuous screening processes which are replacing the traditional methods of crystallization due to numerous benefits to the producer as well as the products. Although faced with certain regulatory and scale-up constraints, cocrystals provide immense opportunities to the field of novel drug development.
Collapse
Affiliation(s)
- Madhulika Banerjee
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| | - Kartik Nimkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| | - Shivraj Naik
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India.
| |
Collapse
|
4
|
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021; 9:685789. [PMID: 34164379 PMCID: PMC8216082 DOI: 10.3389/fchem.2021.685789] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemical community.
Collapse
Affiliation(s)
| | - Elena V. Boldyreva
- Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Ana M. Belenguer
- Yusef Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Vladimir V. Boldyrev
- Novosibirsk State University, Novosibirsk, Russia
- Voevodski Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| |
Collapse
|
5
|
Sanda Bawa A, Meunier-Prest R, Rousselin Y, Couvercelle JP, Stern C, Malézieux B, Bouvet M. Series of charge transfer complexes obtained as crystals in a confined environment. CrystEngComm 2021. [DOI: 10.1039/d1ce00929j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of charge transfer complexes (CTCs) were successfully formed by solvent free processing techniques, using the 1,2,4,5-tetracyano benzene (TCNB) as πA molecule and a series of p-dihydroquinones (H2Qs) as πD counterparts.
Collapse
Affiliation(s)
- Ali Sanda Bawa
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
- Département de chimie, Université d'Agadez, Niger
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
| | - Jean-Pierre Couvercelle
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
| | - Bernard Malézieux
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS - UMR 8232, Sorbonne-Université, 4 place Jussieu, Case 229, F-75252 cedex 05 Paris, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 av. Alain Savary, 21078 cedex Dijon, France
| |
Collapse
|
6
|
Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00825k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight presents an overview of pharmaceutical cocrystal production and its potential in reviving problematic properties of drugs in different dosage forms. The challenges and future outlook of its translational development are discussed.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Yu Chee Sonia Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Department of Pharmacy, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Panzade PS, Shendarkar GR. Pharmaceutical cocrystal: a game changing approach for the administration of old drugs in new crystalline form. Drug Dev Ind Pharm 2020; 46:1559-1568. [PMID: 32799687 DOI: 10.1080/03639045.2020.1810270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pharmaceutical cocrystals are still gaining the interest of the researchers due to their potential to alter physicochemical, mechanical, and pharmacokinetic properties of active pharmaceutical ingredients without negotiating therapeutic action. The diverse new applications of cocrystals, like taste masking, reduced toxicity, patenting opportunities, commercial potential, etc. act as driving force to the rising interest of the pharmaceutical industries. Initially, cocrystals from the view of regulatory authorities, design strategies, cocrystal preparation in brief with special emphasis on scalable and solvent-free hot melt extrusion method, and practical guide to characterization have been provided. The special focus has been given to the biopharmaceutical attributes of the cocrystal. Finally, challenges before and after cocrystal preparation are presented in this review along with some commercial examples of the cocrystals.
Collapse
Affiliation(s)
- Prabhakar S Panzade
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Nanded, India.,Srinath College of Pharmacy, Waluj, India
| | | |
Collapse
|