1
|
Chen L, Fan F, Yang M, Wang L, Bai Y, Qiu S, Lyu C, Huang J. Atomistic insight into the binding mode and self-regulation mechanism of IsPETase towards PET substrates with different polymerization degrees. Phys Chem Chem Phys 2023. [PMID: 37401198 DOI: 10.1039/d3cp01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, however, its extensive use creates a long-term environmental burden. Unlike traditional recycling methods, biodegradation is a sustainable strategy. The emergence of PETase from Ideonella sakaiensis 201-F6 (IsPETase) has brought great potential for the industrialization of degradable PET. In this work, models of enzyme-substrate complexes with different degrees of polymerization were established to study the binding mode using molecular dynamics simulation. We found that the whole binding site can be further subdivided into three parts, including head, middle and tail binding regions. Most importantly, the presence of the middle region formed by both ends of Ser93 and Ser236 provides a potential possibility for the binding of substrates with different chain lengths, and exerts the self-regulation ability of enzymes to accommodate substrates. Meanwhile, the 'pocket bottom' Arg280 in the tail region echoes the 'pocket mouth' Trp185 in the head region, defining the substrate binding region. This work reveals the self-regulation of IsPETase, as well as the key residues for the substrate binding. The solution to these problems enables us to better understand the function of enzymes and design high-performance degradation enzymes, which is of great significance for industrial application research.
Collapse
Affiliation(s)
- Linyu Chen
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Fangfang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Meiyuan Yang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Linquan Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Yushuo Bai
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Changjiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| |
Collapse
|
2
|
Han Q, Wang Q, Wu H, Ge X, Gao A, Bai Y, Gao S, Wang G, Cao X. Novel Naphthalimide‐Based Self‐Assembly Systems with Different Terminal Groups for Sensitive Detection of Thionyl Chloride and Oxalyl Chloride in Two Modes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qingqing Han
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Qingqing Wang
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Huijuan Wu
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Xuefei Ge
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Aiping Gao
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Yifan Bai
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Siyu Gao
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| | - Guixia Wang
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan and Green catalysis and synthesis key laboratory of Xinyang city Xinyang Normal University Xinyang 464000
| |
Collapse
|
3
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
4
|
Fu Y, Zhang Y, Fan F, Wang B, Cao Z. Degradation of pesticides diazinon and diazoxon by phosphotriesterase: insight into divergent mechanisms from QM/MM and MD simulations. Phys Chem Chem Phys 2022; 24:687-696. [PMID: 34927643 DOI: 10.1039/d1cp05034f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis by phosphotriesterase (PTE) is one of the most effective ways of degrading organophosphorus pesticides, but the catalytic efficiency depends on the structural features of substrates. Here the enzymatic degradation of diazinon (DIN) and diazoxon (DON), characterized by PS and PO, respectively, have been investigated by QM/MM calculations and MM MD simulations. Our calculations demonstrate that the hydrolysis of DON (with PO) is inevitably initiated by the nucleophilic attack of the bridging-OH- on the phosphorus center, while for DIN (with PS), we proposed a new degradation mechanism, initiated by the nucleophilic attack of the Znα-bound water molecule, for its low-energy pathway. For both DIN and DON, the hydrolytic reaction is predicted to be the rate-limiting step, with energy barriers of 18.5 and 17.7 kcal mol-1, respectively. The transportation of substrates to the active site, the release of the leaving group and the degraded product are generally verified to be favorable by MD simulations via umbrella sampling, both thermodynamically and dynamically. The side-chain residues Phe132, Leu271 and Tyr309 play the gate-switching role to manipulate substrate delivery and product release. In comparison with the DON-enzyme system, the degraded product of DIN is more easily released from the active site. These new findings will contribute to the comprehensive understanding of the enzymatic degradation of toxic organophosphorus compounds by PTE.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Xia Z, Lin CY, Drndić M. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores. Proteomics 2022; 22:e2100071. [PMID: 34974637 DOI: 10.1002/pmic.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Enabled by proteins, we present an all-electrical method for rapid detection of small pharmaceuticals (ibuprofen and sulfamethoxazole [SMZ]) in aqueous media using silicon nitride pores. Specifically, we use carrier proteins, bovine serum albumin (BSA), and take advantage of their interactions with two small drug molecules to form BSA-drug complexes which can be detected by nm-diameter pores, thereby confirming the presence of small pharmaceuticals. We demonstrate detection of ibuprofen and SMZ at concentrations down to 100 nM (∼21 μg/L) and 48.5 nM (12 μg/L), respectively. We observe changes in electrical signal characteristics (reflected in event durations, rates, current magnitudes, and estimated particle diameters) of BSA-drug complexes compared to BSA-only, and differences between these two small pharmaceuticals, possibly paving a path toward developing selective sensors by identifying "electrical fingerprints" of these molecules in the future. These distinct electrical signals are likely a combined result of diffusion, electrophoretic and electroosmotic effects, interactions between the pore and particles, which depend on pore diameters, pH, and the resulting surface charges. The use of single-molecule-counting nanopores allows sensing of small pharmaceuticals, studies of protein conformational changes, and may aid in efforts to evaluate the impact of small drug molecules on aquatic and human life.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Fan F, Zheng YC, Fu Y, Zhang Y, Zheng H, Lyu C, Chen L, Huang J, Cao Z. QM/MM and MM MD simulations on decontamination of the V-type nerve agent VX by phosphotriesterase: Toward a comprehensive understanding of steroselectivity and activity. Phys Chem Chem Phys 2022; 24:10933-10943. [DOI: 10.1039/d2cp00773h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to deadly toxicity and high environmental stability of the nerve agent VX, an efficient decontamination approach is desperately needed in tackling its severe threat to human secu-rity. The enzymatic...
Collapse
|
7
|
Fu Y, Fan F, Zhang Y, Wang B, Cao Z. Conformational Change of H64 and Substrate Transportation: Insight Into a Full Picture of Enzymatic Hydration of CO 2 by Carbonic Anhydrase. Front Chem 2021; 9:706959. [PMID: 34307302 PMCID: PMC8299336 DOI: 10.3389/fchem.2021.706959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The enzymatic hydration of CO2 into HCO3 - by carbonic anhydrase (CA) is highly efficient and environment-friendly measure for CO2 sequestration. Here extensive MM MD and QM/MM MD simulations were used to explore the whole enzymatic process, and a full picture of the enzymatic hydration of CO2 by CA was achieved. Prior to CO2 hydration, the proton transfer from the water molecule (WT1) to H64 is the rate-limiting step with the free energy barrier of 10.4 kcal/mol, which leads to the ready state with the Zn-bound OH-. The nucleophilic attack of OH- on CO2 produces HCO3 - with the free energy barrier of 4.4 kcal/mol and the free energy release of about 8.0 kcal/mol. Q92 as the key residue manipulates both CO2 transportation to the active site and release of HCO3 -. The unprotonated H64 in CA prefers in an inward orientation, while the outward conformation is favorable energetically for its protonated counterpart. The conformational transition of H64 between inward and outward correlates with its protonation state, which is mediated by the proton transfer and the product release. The whole enzymatic cycle has the free energy span of 10.4 kcal/mol for the initial proton transfer step and the free energy change of -6.5 kcal/mol. The mechanistic details provide a comprehensive understanding of the entire reversible conversion of CO2 into bicarbonate and roles of key residues in chemical and nonchemical steps for the enzymatic hydration of CO2.
Collapse
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Sayed M, Balayan J, Singh PK, Pal H. Modulation of excited-state photodynamics of ESIPT probe 1′-hydroxy-2′-acetonaphthone (HAN) on interaction with bovine serum albumin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang Z, Fan F, Luo W, Zhao Y, Wang C. Molecular Dynamics Revealing a Detour-Forward Release Mechanism of Tacrine: Implication for the Specific Binding Characteristics in Butyrylcholinesterase. Front Chem 2020; 8:730. [PMID: 33195011 PMCID: PMC7477934 DOI: 10.3389/fchem.2020.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/14/2020] [Indexed: 01/29/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a non-specific enzyme with clinical pharmacological and toxicological significance, which was a renewed interest as therapeutic target in Alzheimer's disease (AD) nowadays. Here, all-atom molecular dynamics simulations of butyrylcholinesterase with tacrine complex were designed to characterize inhibitor binding modes, strengths, and the hydrogen-bond dependent non-covalent release mechanism. Four possible release channels were identified, and the most favorable channel was determined by random acceleration molecular dynamics molecular dynamics (RAMD MD) simulations. The thermodynamic and dynamic properties as well as the corresponding Detour-forward delivery mechanism were determined according to the classical molecular dynamics (MD) simulations accompanied with umbrella sampling. The free energy barrier of the tacrine release process for the most beneficial pathway is about 10.95 kcal/mol, which is related to the non-covalent interactions from the surrounding residues, revealing the specific binding characteristics in the active site. The residues including Asp70, Ser79, Trp82, Gly116, Thr120, Tyr332, and His438 were identified to play major roles in the stabilization of tacrine in the pocket of BChE, where hydrogen bonding and π-π interactions are significant factors. Tyr332 and Asp70, which act as gate keepers, play crucial roles in the substrate delivery. The present results provide a basic understanding for the ligand transport mechanism depending on the BChE enzymatic environment, which is useful for the design of BChE inhibitors in the future.
Collapse
Affiliation(s)
- Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Fangfang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Sen S, Perrin MW, Sedgwick AC, Dunsky EY, Lynch VM, He XP, Sessler JL, Arambula JF. Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chem Commun (Camb) 2020; 56:7877-7880. [PMID: 32520019 PMCID: PMC7368814 DOI: 10.1039/d0cc03339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A post-synthetic strategy is reported that allows for functionalisation of Au(i)-bis NHCs via carbonate formation. The scope of this methodology was explored using both aromatic and aliphatic alcohols. As a demonstration of potential utility, the fluorescent Au(i)-bis NHC conjugate 5 was prepared; it was found to have enhanced stability when formulated with bovine serum albumin, localise within the mitochondria of A549 cells and do so without compromising the high cytotoxicity seen for the parent Au(i)-bis NHC system.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | |
Collapse
|