1
|
Liu M, Zhe T, Li F, Zhu L, Ouyang S, Wang L. An ultrasensitive electrochemical sensor based on NiFe-LDH-MXene and ruthenium nanoparticles composite for detection of nitrofurantoin in food samples. Food Chem 2024; 461:140915. [PMID: 39181055 DOI: 10.1016/j.foodchem.2024.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The excessive use of nitrofurantoin (NFT) represents a threat to ecosystems and food safety, making it necessary to develop efficient and accurate detection methods. Herein, the Ru/NiFe-LDH-MXene/SPCE electrode was successfully synthesized by one-step electrodeposition and employed to the NFT electrochemical sensing. Combining 2D MXenes with multifunctional 2D layered double hydroxides (LDHs) creates synergistic interactions within the MXene-LDH heterostructures, modifying the electrochemical performance. Furthermore, the incorporation of noble metal nanoparticles and nanoclusters can significantly enhance electrochemical performance by promoting favorable interactions at the metal-carrier interface and optimizing the rearrangement of electronic structure. Based on this, the developed Ru/NiFe-LDH-MXene/SPCE sensor demonstrates remarkable sensitivity (152.44 μA μM-1 cm-2) and an ultralow detection limit (2.2 nM). Notably, the sensor was employed for NFT detection in food samples with satisfactory recoveries, making it a promising electrochemical sensor for the detection of NFT.
Collapse
Affiliation(s)
- Mengru Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Limin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Shaohui Ouyang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, PR China..
| |
Collapse
|
2
|
Molina-Serrano A, Luque-Centeno JM, Sebastián D, Arenas LF, Turek T, Vela I, Carrasco-Marín F, Lázaro MJ, Alegre C. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:2779-2790. [PMID: 38606034 PMCID: PMC11005476 DOI: 10.1021/acsaem.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.
Collapse
Affiliation(s)
- Antonio
J. Molina-Serrano
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - José M. Luque-Centeno
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - David Sebastián
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Luis F. Arenas
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany
- Research
Center for Energy Storage Technologies, Clausthal University of Technology. Am Stollen 19 A, 38640 Goslar, Germany
| | - Irene Vela
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | | | - María J. Lázaro
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| | - Cinthia Alegre
- Instituto
de Carboquímica, Consejo Superior
de Investigaciones Científicas-CSIC. C/Miguel Luesma Castán, 4, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Wan CTC, Ismail A, Quinn AH, Chiang YM, Brushett FR. Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1198-1214. [PMID: 36607828 DOI: 10.1021/acs.langmuir.2c03003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.
Collapse
Affiliation(s)
- Charles Tai-Chieh Wan
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Akram Ismail
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Alexander H Quinn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yet-Ming Chiang
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Fikile R Brushett
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
4
|
Halada Š, Zlatník J, Mazúr P, Charvát J, Slouka Z. Fast screening of carbon-based nanostructured materials as potential electrode materials for vanadium redox flow battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Feynerol V, El Hage R, Brites Helú M, Fierro V, Celzard A, Liu L, Etienne M. Comparative kinetic analysis of redox flow battery electrolytes: From micro-fibers to macro-felts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Fischer P, Mazúr P, Krakowiak J. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Molecules 2022; 27:560. [PMID: 35056875 PMCID: PMC8778144 DOI: 10.3390/molecules27020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Redox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active compounds. Aqueous-based organic electrolytes are considered as more promising electrolytes to achieve "green", safe, and low-cost energy storage. Many organic compounds and their derivatives have recently been intensively examined for application to redox flow batteries. This work presents an up-to-date overview of the redox organic compound groups tested for application in aqueous RFB. In the initial part, the most relevant requirements for technical electrolytes are described and discussed. The importance of supporting electrolytes selection, the limits for the aqueous system, and potential synthetic strategies for redox molecules are highlighted. The different organic redox couples described in the literature are grouped in a "family tree" for organic redox couples. This article is designed to be an introduction to the field of organic redox flow batteries and aims to provide an overview of current achievements as well as helping synthetic chemists to understand the basic concepts of the technical requirements for next-generation energy storage materials.
Collapse
Affiliation(s)
- Peter Fischer
- Fraunhofer Institute for Chemical Technology, Pfinztal, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany
| | - Petr Mazúr
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Praha 6, 166 28 Prague, Czech Republic;
| | - Joanna Krakowiak
- Physical Chemistry Department, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
7
|
McArdle S, Landon-Lane L, Marshall AT. Using single fibre electrodes to determine the spatial variability of rate constants across carbon felt electrodes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
8
|
Tichter T, Schneider J, Roth C. Convolutive modeling of cyclic voltammetry, AC-voltammetry, sine wave voltammetry and impedance spectroscopy with interfacial CPE behaviour and uncompensated ohmic resistances: A Unified Theory. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tichter T, Andrae D, Roth C. Analytical solutions for the diffusive mass transfer at cylindrical and hollow-cylindrical electrodes with reflective and transmissive boundary conditions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hybrid Electrospun Nanofibers as Electrocatalyst for Vanadium Redox Flow Batteries: Theory and Experiment. ChemElectroChem 2021. [DOI: 10.1002/celc.202001380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kroner I, Becker M, Turek T. Determination of Rate Constants and Reaction Orders of Vanadium‐Ion Kinetics on Carbon Fiber Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202001033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabelle Kroner
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
- Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| | - Maik Becker
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
| | - Thomas Turek
- Research Center Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
- Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
12
|
Landon-Lane L, Downard AJ, Marshall AT. Single fibre electrode measurements – A versatile strategy for assessing the non-uniform kinetics at carbon felt electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Tichter T, Andrae D, Schneider J, Gebhard M, Hilger A, Manke I, Roth C. Real-space simulation of cyclic voltammetry in carbon felt electrodes by combining micro X-ray CT data, digital simulation and convolutive modeling. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Tichter T, Schneider J, Andrae D, Gebhard M, Roth C. Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at Macroporous Electrodes by Considering Random Arrays of Microelectrodes. Chemphyschem 2020; 21:428-441. [PMID: 31841241 PMCID: PMC7078989 DOI: 10.1002/cphc.201901113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Indexed: 11/13/2022]
Abstract
An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at macroporous electrodes such as felts, foams, and layered structures is presented. By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelectrodes, hollow-cylindrical microelectrodes, and hollow-spherical microelectrodes the internal diffusion domains of the macroporous structures are approximated. A universal algorithm providing the time-dependent surface concentrations of the electrochemically active species, required for simulating cyclic voltammetry responses of the individual planar, cylindrical, and spherical microelectrodes, is presented as well. An essential ingredient of the algorithm, which is based on Laplace integral transformation techniques, is the use of a modified Talbot contour for the inverse Laplace transformation. It is demonstrated that first-order homogeneous chemical kinetics preceding and/or following the electrochemical reaction and electrochemically active species with non-equal diffusion coefficients can be included in all diffusion models as well. The proposed theory is supported by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6 ]4- at platinum electrodes as well as for a technically relevant reaction, the oxidation of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide a powerful open source tool for simulating and evaluating CV data implemented into a Python graphical user interface (GUI).
Collapse
Affiliation(s)
- Tim Tichter
- Freie Universität Berlin Institut für Chemie und BiochemieTakustr. 314195BerlinGermany
| | - Jonathan Schneider
- Freie Universität Berlin Institut für Chemie und BiochemieTakustr. 314195BerlinGermany
| | - Dirk Andrae
- Freie Universität Berlin Institut für Chemie und BiochemieArnimallee 2214195BerlinGermany
| | - Marcus Gebhard
- Universität Bayreuth Lehrstuhl für WerkstoffverfahrenstechnikUniversitätsstr. 3095447BayreuthGermany
| | - Christina Roth
- Universität Bayreuth Lehrstuhl für WerkstoffverfahrenstechnikUniversitätsstr. 3095447BayreuthGermany
| |
Collapse
|
15
|
Landon-Lane L, Marshall AT, Harrington DA. EIS at carbon fiber cylindrical microelectrodes. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|