1
|
Einsele R, Mitrić R. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB. J Chem Theory Comput 2024. [PMID: 39051619 DOI: 10.1021/acs.jctc.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We introduce a novel methodology for simulating the excited-state dynamics of extensive molecular aggregates in the framework of the long-range corrected time-dependent density-functional tight-binding fragment molecular orbital method (FMO-LC-TDDFTB) combined with the mean-field Ehrenfest method. The electronic structure of the system is described in a quasi-diabatic basis composed of locally excited and charge-transfer states of all fragments. In order to carry out nonadiabatic molecular dynamics simulations, we derive and implement the excited-state gradients of the locally excited and charge-transfer states. Subsequently, the accuracy of the analytical excited-state gradients is evaluated. The applicability to the simulation of exciton transport in organic semiconductors is illustrated on a large cluster of anthracene molecules. Additionally, nonadiabatic molecular dynamics simulations of a model system of benzothieno-benzothiophene molecules highlight the method's utility in studying charge-transfer dynamics in organic materials. Our new methodology will facilitate the investigation of excitonic transfer in extensive biological systems, nanomaterials, and other complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| |
Collapse
|
2
|
Ohno S, Uratani H, Nakai H. Implementation of Nonadiabatic Molecular Dynamics for Intersystem Crossing Based on a Time-Dependent Density-Functional Tight-Binding Method. J Phys Chem A 2024; 128:5999-6009. [PMID: 38990848 DOI: 10.1021/acs.jpca.4c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Intersystem crossing (ISC) and internal conversion (IC) are types of nonadiabatic transitions that play important roles in a wide range of fields, including photochemistry, photophysics, and photobiology. The nonadiabatic molecular dynamics (NA-MD) method is a powerful tool for computational simulations of dynamic phenomena involving nonadiabatic transitions. In this study, we implemented the NA-MD method, which treats ISC and IC on an equal footing, where the electronic structure is treated at the level of the time-dependent (TD) density-functional tight-binding (DFTB) method, a low-cost semiempirical analog of TD density functional theory (DFT). In particular, the spin-orbit coupling calculation algorithm was implemented in the TD-DFTB framework, and the results showed trends similar to those obtained using TD-DFT. In addition, the NA-MD method successfully reproduced ultrafast ISC of 2-nitronaphthalene.
Collapse
Affiliation(s)
- Shota Ohno
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiroki Uratani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Scognamiglio A, Thalmann KS, Hartweg S, Rendler N, Bruder L, Coto PB, Thoss M, Stienkemeier F. Non-adiabatic electronic relaxation of tetracene from its brightest singlet excited state. J Chem Phys 2024; 161:024302. [PMID: 38973758 DOI: 10.1063/5.0214006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The ultrafast relaxation dynamics of tetracene following UV excitation to the bright singlet state S6 has been studied with time-resolved photoelectron spectroscopy. With the help of high-level ab initio multireference perturbation theory calculations, we assign photoelectron signals to intermediate dark electronic states S3, S4, and S5 as well as to a low-lying electronic state S2. The energetic structure of these dark states has not been determined experimentally previously. The time-dependent photoelectron yields assigned to the states S6, S5, and S4 have been analyzed and reveal the depopulation of S6 within 60 fs, while S5 and S4 are populated with delays of about 50 and 80 fs. The dynamics of the lower-lying states S3 and S2 seem to agree with a delayed population coinciding with the depopulation of the higher-lying states S4-S6 but could not be elucidated in full detail due to the low signal levels of the corresponding two-photon ionization probe processes.
Collapse
Affiliation(s)
- A Scognamiglio
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - K S Thalmann
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - S Hartweg
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - N Rendler
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - L Bruder
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - P B Coto
- Materials Physics Center (CFM), CSIC and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - M Thoss
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| | - F Stienkemeier
- University of Freiburg, Institute of Physics, Hermann-Herder-Str. 3, Freiburg, Germany
| |
Collapse
|
4
|
Díaz Mirón G, Lien-Medrano CR, Banerjee D, Morzan UN, Sentef MA, Gebauer R, Hassanali A. Exploring the Mechanisms behind Non-aromatic Fluorescence with the Density Functional Tight Binding Method. J Chem Theory Comput 2024; 20:3864-3878. [PMID: 38634760 DOI: 10.1021/acs.jctc.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Recent experimental findings reveal nonconventional fluorescence emission in biological systems devoid of conjugated bonds or aromatic compounds, termed non-aromatic fluorescence (NAF). This phenomenon is exclusive to aggregated or solid states and remains absent in monomeric solutions. Previous studies focused on small model systems in vacuum show that the carbonyl stretching mode along with strong interaction of short hydrogen bonds (SHBs) remains the primary vibrational mode explaining NAF in these systems. In order to simulate larger model systems taking into account the effects of the surrounding environment, in this work we propose using the density functional tight-binding (DFTB) method in combination with non-adiabatic molecular dynamics (NAMD) and the mixed quantum/molecular mechanics (QM/MM) approach. We investigate the mechanism behind NAF in the crystal structure of l-pyroglutamine-ammonium, comparing it with the related nonfluorescent amino acid l-glutamine. Our results extend our previous findings to more realistic systems, demonstrating the efficiency and robustness of the proposed DFTB method in the context of NAMD in biological systems. Furthermore, due to its inherent low computational cost, this method allows for a better sampling of the nonradiative events at the conical intersection which is crucial for a complete understanding of this phenomenon. Beyond contributing to the ongoing exploration of NAF, this work paves the way for future application of this method in more complex biological systems such as amyloid aggregates, biomaterials, and non-aromatic proteins.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Carlos R Lien-Medrano
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Debarshi Banerjee
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Uriel N Morzan
- Instituto de Fisica de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Michael A Sentef
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
- Center for Free-Electron Laser Science (CFEL), Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Ralph Gebauer
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| |
Collapse
|
5
|
Rapacioli M, Buey MY, Spiegelman F. Addressing electronic and dynamical evolution of molecules and molecular clusters: DFTB simulations of energy relaxation in polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2024; 26:1499-1515. [PMID: 37933901 PMCID: PMC10793726 DOI: 10.1039/d3cp02852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We present a review of the capabilities of the density functional based Tight Binding (DFTB) scheme to address the electronic relaxation and dynamical evolution of molecules and molecular clusters following energy deposition via either collision or photoabsorption. The basics and extensions of DFTB for addressing these systems and in particular their electronic states and their dynamical evolution are reviewed. Applications to PAH molecules and clusters, carbonaceous systems of major interest in astrochemical/astrophysical context, are reported. A variety of processes are examined and discussed such as collisional hydrogenation, fast collisional processes and induced electronic and charge dynamics, collision-induced fragmentation, photo-induced fragmentation, relaxation in high electronic states, electronic-to-vibrational energy conversion and statistical versus non-statistical fragmentation. This review illustrates how simulations may help to unravel different relaxation mechanisms depending on various factors such as the system size, specific electronic structure or excitation conditions, in close connection with experiments.
Collapse
Affiliation(s)
- Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Maysa Yusef Buey
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
6
|
Dillon AD, Gieseking RLM. Convergence of Time-Derivative Nonadiabatic Couplings in Plane-Wave DFT Calculations. J Phys Chem A 2023; 127:9612-9620. [PMID: 37924298 DOI: 10.1021/acs.jpca.3c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Accurate prediction of charge carrier relaxation rates is essential to design molecules and materials with the desired photochemical properties for applications like photocatalysis and solar energy conversion. Nonadiabatic molecular dynamics allows one to simulate the relaxation process of excited charge carriers. Plane-wave density functional theory (DFT) calculations make the time-derivative nonadiabatic couplings (TNACs) simple to compute because the basis is independent of the atomic positions. However, the effect of the kinetic energy cutoff for the plane-wave basis on the accuracy of the dynamics has not been studied. Here, we examine the effect of the kinetic energy cutoff on the TNACs and decay time scales for the prototypical model system of tetracene. These calculations show that the choice of kinetic energy cutoff can change the relaxation time by up to 30%. The relaxation times of states that have small TNACs to other states or are far from degenerate are more sensitive to the kinetic energy cutoff than those of states with large TNACs or near degeneracies. A kinetic energy cutoff of 60 Ry is sufficient for all states to reach semiquantitative agreement (absolute error <10%) with the decay times of our 110 Ry reference data, and a cutoff of 80 Ry is required for all states to reach quantitative agreement (absolute error <2%).
Collapse
Affiliation(s)
- Alva D Dillon
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Rebecca L M Gieseking
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
7
|
Garcia GA, Dontot L, Rapacioli M, Spiegelman F, Bréchignac P, Nahon L, Joblin C. Electronic effects in the dissociative ionisation of pyrene clusters. Phys Chem Chem Phys 2023; 25:4501-4510. [PMID: 36722859 DOI: 10.1039/d2cp05679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present a combined experimental and theoretical study on the dissociative ionisation of clusters of pyrene. We measured the experimental appearance energies in the photon energy range 7.2-12.0 eV of the fragments formed from neutral monomer loss for clusters up to the hexamer. The results obtained show a deviation from statistical dissociation. From electronic structure calculations, we suggest that the role of excited states must be considered in the interpretation of experimental results, even in these relatively large systems. Non-statistical effects in the dissociative ionization process of polycyclic aromatic hydrocarbon (PAH) clusters may have an impact on the assessment of mechanisms determining the stability of these clusters in astrophysical environments.
Collapse
Affiliation(s)
- Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départamentale 128, 91190 Saint Aubin, France.
| | - Léo Dontot
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse, France.,Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Philippe Bréchignac
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départamentale 128, 91190 Saint Aubin, France.
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse, France
| |
Collapse
|
8
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
9
|
Sakhraoui T, Karlický F. DFTB investigations of the electronic and magnetic properties of fluorographene with vacancies and with adsorbed chemical groups. Phys Chem Chem Phys 2022; 24:3312-3321. [PMID: 35050289 DOI: 10.1039/d1cp00995h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The electronic and magnetic properties of fluorographene (CF) in the presence of F-vacancy defects and/or chemical groups (-OH, -CN, or -NH2) were computationally investigated within the framework of the density functional tight-binding (DFTB) method. The current method parameterization allowed us to perform accurate electronic structure calculations (at the ab initio level of many-body methods in the particular case of CF) for hundreds of atoms in the computational cell. We show that the F-vacancy and/or chemical groups influence the magnetic structure, which depends on the number of defects and their distribution between the two sides of the graphene plane. Interestingly, we pointed out a possibility of imprinting local magnetism not only via F-vacancy and -OH combinations, but also using F-vacancies and -CN or -NH2 groups. In such structures, the magnetic ordering and the total magnetic moments depend on their adsorption sites and their presence in the same or on opposite sides of the graphene plane. We devote particular attention to the interacting chemical group with the F-vacancies. The interaction between the adsorbed chemical group and the unpaired spins associated with the F-vacancies in CF gives rise to interesting magnetic structures. Finally, the zigzag-like direction is shown as the most preferred for the defluorination of CF. Stable ferrimagnetic zigzag chains with interesting properties are considered to be basic magnetic features in perturbed CF. Our work provides new guidelines for engineering multifunctional spintronic components using CF as a base material. We believe, in particular, that the magnetism is predominantly controlled by the F-vacancies, and the ferromagnet can ideally be regulated via the adsorption of a chemical group on a defective CF supercell.
Collapse
Affiliation(s)
- Taoufik Sakhraoui
- Department of Physics, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic.
| | - František Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic.
| |
Collapse
|
10
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
11
|
Hoche J, Flock M, Miao X, Philipp LN, Wenzel M, Fischer I, Mitric R. Excimer formation dynamics in the isolated tetracene dimer. Chem Sci 2021; 12:11965-11975. [PMID: 34667562 PMCID: PMC8457379 DOI: 10.1039/d1sc03214c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics. Here, we study the photoinduced dynamics of the tetracene dimer in the gas phase by time-resolved photoionisation and photoion imaging experiments as well as nonadiabatic dynamics simulations in order to obtain mechanistic insight into the excimer formation dynamics. The experiments are performed using a picosecond laser system for excitation into the S2 state and reveal a biexponential time dependence. The time constants, obtained as a function of excess energy, lie in the range between ≈10 ps and 100 ps and are assigned to the relaxation of the excimer on the S1 surface and to its deactivation to the ground state. Simulations of the quantum-classical photodynamics are carried out in the frame of the semi-empirical CISD and TD-lc-DFTB methods. Both theoretical approaches reveal a dominating relaxation pathway that is characterised by the formation of a perfectly stacked excimer. TD-lc-DFTB simulations have also uncovered a second relaxation channel into a less stable dimer conformation in the S1 state. Both methods have consistently shown that the electronic and geometric relaxation to the excimer state is completed in less than 10 ps. The inclusion of doubly excited states in the CISD dynamics and their diabatisation further allowed to observe a transient population of the 1(TT) state, which, however, gets depopulated on a timescale of 8 ps, leading finally to the trapping in the excimer minimum. The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics.![]()
Collapse
Affiliation(s)
- Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Flock
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Luca Nils Philipp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
12
|
Posenitskiy E, Spiegelman F, Lemoine D. On application of deep learning to simplified quantum-classical dynamics in electronically excited states. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abfe3f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Deep learning (DL) is applied to simulate non-adiabatic molecular dynamics of phenanthrene, using the time-dependent density functional based tight binding (TD-DFTB) approach for excited states combined with mixed quantum–classical propagation. Reference calculations rely on Tully’s fewest-switches surface hopping (FSSH) algorithm coupled to TD-DFTB, which provides electronic relaxation dynamics in fair agreement with various available experimental results. Aiming at describing the coupled electron-nuclei dynamics in large molecular systems, we then examine the combination of DL for excited-state potential energy surfaces (PESs) with a simplified trajectory surface hopping propagation based on the Belyaev–Lebedev (BL) scheme. We start to assess the accuracy of the TD-DFTB approach upon comparison of the optical spectrum with experimental and higher-level theoretical results. Using the recently developed SchNetPack (Schütt et al 2019 J. Chem. Theory Comput.
15 448–55) for DL applications, we train several models and evaluate their performance in predicting excited-state energies and forces. Then, the main focus is given to the analysis of the electronic population of low-lying excited states computed with the aforementioned methods. We determine the relaxation timescales and compare them with experimental data. Our results show that DL demonstrates its ability to describe the excited-state PESs. When coupled to the simplified BL scheme considered in this study, it provides reliable description of the electronic relaxation in phenanthrene as compared with either the experimental data or the higher-level FSSH/TD-DFTB theoretical results. Furthermore, the DL performance allows high-throughput analysis at a negligible cost.
Collapse
|
13
|
Uratani H, Yoshikawa T, Nakai H. Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding. J Chem Theory Comput 2021; 17:1290-1300. [PMID: 33577323 DOI: 10.1021/acs.jctc.0c01155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonradiative relaxation of excited molecules is central to many crucial issues in photochemistry. Condensed phases are typical contexts in which such problems are considered, and the nonradiative relaxation dynamics are expected to be significantly affected by interactions with the environment, for example, a solvent. We developed a nonadiabatic molecular dynamics simulation technique that can treat the nonradiative relaxation and explicitly include the environment in the calculations without a heavy computational burden. Specifically, we combined trajectory surface hopping with Tully's fewest-switches algorithm, a tight-binding approximated version of spin-flip time-dependent density-functional theory, and divide-and-conquer (DC) spatial fragmentation scheme. Numerical results showed that this method can treat systems with thousands of atoms within reasonable computational resources, and the error arising from DC fragmentation is negligibly small. Using this method, we obtained molecular insights into the solvent dependence of the photoexcited-state dynamics of trans-azobenzene, which demonstrate the importance of the environment for condensed-phase nonradiative relaxation.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
14
|
C A Valente D, do Casal MT, Barbatti M, Niehaus TA, Aquino AJA, Lischka H, Cardozo TM. Excitonic and charge transfer interactions in tetracene stacked and T-shaped dimers. J Chem Phys 2021; 154:044306. [PMID: 33514084 DOI: 10.1063/5.0033272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extended quantum chemical calculations were performed for the tetracene dimer to provide benchmark results, analyze the excimer survival process, and explore the possibility of using long-range-corrected (LC) time-dependent second-order density functional tight-biding (DFTB2) for this system. Ground- and first-excited-state optimized geometries, vertical excitations at relevant minima, and intermonomer displacement potential energy curves (PECs) were calculated for these purposes. Ground-state geometries were optimized with the scaled-opposite-spin (SOS) second-order Møller-Plesset perturbation (MP2) theory and LC-DFT (density functional theory) and LC-DFTB2 levels. Excited-state geometries were optimized with SOS-ADC(2) (algebraic diagrammatic construction to second-order) and the time-dependent approaches for the latter two methods. Vertical excitations and PECs were compared to multireference configuration interaction DFT (DFT/MRCI). All methods predict the lowest-energy S0 conformer to have monomers parallel and rotated relative to each other and the lowest S1 conformer to be of a displaced-stacked type. LC-DFTB2, however, presents some relevant differences regarding other conformers for S0. Despite some state-order inversions, overall good agreement between methods was observed in the spectral shape, state character, and PECs. Nevertheless, DFT/MRCI predicts that the S1 state should acquire a doubly excited-state character relevant to the excimer survival process and, therefore, cannot be completely described by the single reference methods used in this work. PECs also revealed an interesting relation between dissociation energies and the intermonomer charge-transfer interactions for some states.
Collapse
Affiliation(s)
- Daniel C A Valente
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Thomas A Niehaus
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Thiago M Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Uratani H, Morioka T, Yoshikawa T, Nakai H. Fast Nonadiabatic Molecular Dynamics via Spin-Flip Time-Dependent Density-Functional Tight-Binding Approach: Application to Nonradiative Relaxation of Tetraphenylethylene with Locked Aromatic Rings. J Chem Theory Comput 2020; 16:7299-7313. [PMID: 33197192 DOI: 10.1021/acs.jctc.0c00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nonadiabatic dynamics around conical intersections between ground and excited states are crucial to understand excited-state phenomena in complex chemical systems. With this background in mind, we present an approach combining fewest-switches trajectory surface hopping and spin-flip (SF) time-dependent (TD) density-functional tight binding (DFTB), which is a simplified version of SF-TD density functional theory (DFT) with semiempirical parametrizations, for computationally efficient nonadiabatic molecular dynamics simulations. The estimated computational time of the SF-TD-DFTB approach is several orders of magnitude lower than that of SF-TD-DFT. In addition, the proposed method reproduces the time scales and quantum yields in photoisomerization reactions of azobenzene at a level comparable with conventional ab initio approaches, demonstrating reasonable accuracy. Finally, we report a practical application of the developed technique to explore the nonradiative relaxation processes of tetraphenylethylene and its derivative with torsionally locked aromatic rings and discuss the effect of locking the rings on the excited-state lifetime.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Toshiki Morioka
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
16
|
Uratani H, Nakai H. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. J Chem Phys 2020; 152:224109. [DOI: 10.1063/5.0006831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
17
|
Uratani H, Nakai H. Simulating the Coupled Structural-Electronic Dynamics of Photoexcited Lead Iodide Perovskites. J Phys Chem Lett 2020; 11:4448-4455. [PMID: 32418430 DOI: 10.1021/acs.jpclett.0c01028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motivated by the optoelectronic applications of lead halide perovskites (LHPs), researchers have paid considerable attention to their photoexcited-state dynamics, where the coupling between the electronic and nuclear dynamics is pronounced. Here, we present simulations of the photoexcited-state dynamics of representative lead iodide perovskites, CsPbI3 and MAPbI3 (MA = CH3NH3), by adopting nonadiabatic molecular dynamics combined with the linear-response time-dependent density-functional tight-binding (LR-TD-DFTB) method, an efficient excited-state calculation framework. In the calculations, the electronic wave function and the nuclear coordinates were propagated in a mutually dependent manner. The results suggest that the excited LHPs undergo exciton dissociation, hot carrier cooling, and polaron formation on similar time scales. In particular, the decay of the carrier energy is attributed to not only the relaxation toward the band edge but also the change in orbital energy originating from the structural deformation, highlighting the importance of coupling between the electronic and nuclear degrees of freedom.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
18
|
Posenitskiy E, Rapacioli M, Lemoine D, Spiegelman F. Theoretical investigation of the electronic relaxation in highly excited chrysene and tetracene: The effect of armchair vs zigzag edge. J Chem Phys 2020; 152:074306. [PMID: 32087654 DOI: 10.1063/1.5135369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-adiabatic molecular dynamics of neutral chrysene and tetracene molecules is investigated using Tully's fewest switches surface hopping algorithm coupled to the time-dependent density functional based tight-binding (TD-DFTB) method for electronic structure calculations. We first assess the performance of two DFTB parameter sets based on the computed TD-DFTB absorption spectra. The main focus is given to the analysis of the electronic relaxation from the brightest excited state following absorption of a UV photon. We determine the dynamical relaxation times and discuss the underlying mechanisms. Our results show that the electronic population of the brightest excited singlet state in armchair-edge chrysene decays an order-of-magnitude faster than the one in zigzag-edge tetracene. This is correlated with a qualitatively similar difference of energy gaps between the brightest state and the state lying just below in energy, which is also consistent with our previous study on polyacenes.
Collapse
Affiliation(s)
- Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité (LCAR), IRSAMC UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques (LCPQ), IRSAMC UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Didier Lemoine
- Laboratoire Collisions Agrégats et Réactivité (LCAR), IRSAMC UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques (LCPQ), IRSAMC UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
19
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|