1
|
Guo S, Jin X, Zhang D, Zhou H, Yu C, Huang J, Zhang Z, Su J. Exploring Efficient Dual-Phase Emissive Fluorophores with High Mobility by Integrating a Rigid Donor and Flexible Acceptor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10407-10416. [PMID: 38365193 DOI: 10.1021/acsami.3c18176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Developing luminogens with a high emission efficiency in both single-molecule and aggregate states, as well as high mobility, shows promise for advancing the iteration and update of organic optoelectronic materials. However, achieving a delicate balance between the plane configuration of luminophores and the strong exciton interactions of aggregates is a formidable task from the molecular design perspective. This dilemma was overcome by integrating a rigid donor and flexible acceptor to establish donor-acceptor (D-A) type emitters. The π-conjugate-extended donor ensures the substantial planarity of these molecules, allowing strong emission in solution with photoluminescence quantum yield values of 86% and 75%. Furthermore, the restricted molecular motion of the aggregation-induced emission moiety and the formation of J-aggregates reduce the quenching effect, leading to a high emissive efficiency of 85% and 91% in the aggregate state. The mildly distorted D-A geometry builds moderate electrostatic interaction, resulting in high mobility with μM,h of 7.12 × 10-5 and 3.27 × 10-4 cm2/V s. Additionally, an improved synthesized procedure for terminal E-configured acrylonitrile with metal-free and concise reaction conditions is presented. The successful application of the synthesized compounds in organic light-emitting diode devices demonstrates the practicability of the molecular design strategy with connecting a rigid donor and flexible acceptor.
Collapse
Affiliation(s)
- Shiyan Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Daheng Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Haitao Zhou
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Chao Yu
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Jinhai Huang
- Shanghai Taoe Chemical Technology Co., Ltd, Shanghai 200030, P. R. China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Jian N, Guo R, Zuo L, Sun Y, Xue Y, Liu J, Zhang K. Bioinspired Self-Growing Hydrogels by Harnessing Interfacial Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210609. [PMID: 36585822 DOI: 10.1002/adma.202210609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The production of natural materials is achieved through a bottom-up approach, in which materials spontaneously grow and adapt to the external environment. Synthetic materials are specifically designed and fabricated as engineered materials; however, they are far away from these natural self-growing attributes. Thus, design and fabrication of synthetic material systems to replicate the self-growing characteristics of those natural prototypes (i.e., hairs and nails) remains challenging. Inspired by the self-growing behaviors of keratin proteins, here the fabrication of synthetic hydrogels (i.e., polyacrylamide (PAAm)) from the free radical polymerization at the interface between AAm precursor solution and liquid metals (i.e., eutectic gallium-indium (EGaIn)) is reported. The newly formed hydrogel materials at the EGaIn/AAm precursor interface gradually push the whole hydrogel upward, enabling the self-growing of these synthetic hydrogel materials. This work not only endows the fabrication of synthetic materials with unprecedented self-growing characters, but also broadens the potential applications of self-growing materials in actuation and soft robotics.
Collapse
Affiliation(s)
- Nannan Jian
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rui Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Zuo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yibo Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, P. R. China
| |
Collapse
|
3
|
Pervez M, Pearce AK, Husband JT, Male L, Torrent‐Sucarrat M, O'Reilly RK. Enhancing Dual-State Emission in Maleimide Fluorophores through Fluorocarbon Functionalisation. Chemistry 2022; 28:e202201877. [PMID: 35857384 PMCID: PMC9804613 DOI: 10.1002/chem.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 01/05/2023]
Abstract
Herein, a library of trifluoroethyl substituted aminomaleimide derivatives are reported with small size and enhanced emissions in both solution and solid-state. A diCH2 CF3 substituted aminochloromaleimide exhibits the most efficient dual-state emission (Φf >50 % in solution and solid-state), with reduced quenching from protic solvents. This is attributed to the reduction of electron density on the maleimide ring and suppressed π-π stacking in the solid-state. This mechanism was explored in-depth by crystallographic analysis, and modelling of the electronic distribution of HOMO-LUMO isosurfaces and NCI plots. Hence, these dual-state dyes overcome the limitations of single-state luminescence and will serve as an important step forward for this rapidly developing nascent field.
Collapse
Affiliation(s)
- Maria Pervez
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Amanda K. Pearce
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Jonathan T. Husband
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Miquel Torrent‐Sucarrat
- Department of Organic Chemistry IUniversidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC)Manuel Lardizabal Ibilbidea 3Donostia20018Spain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi, 5Bilbao48009Spain
| | - Rachel K. O'Reilly
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| |
Collapse
|
4
|
Hazra A, Mondal U, Mandal S, Banerjee P. Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials. Dalton Trans 2021; 50:8657-8670. [PMID: 34060577 DOI: 10.1039/d1dt00705j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular luminescent frameworks with conjugated architectures exhibits interesting photophysical properties with phenomenal chemical and thermal stability. This has instigated global researchers towards its extensive application in toxic analyte detection and the formulation of anti-counterfeit materials. In correlation with this present scenario, luminescent metal-organic frameworks (LMOFs), possessing tailorable structural and functional properties and exceptional physicochemical features, have been categorized as emerging 'smart materials'. Interestingly, LMOFs have assisted in the rapid development of an effectual sensing platform and swift fabrication of anti-counterfeit materials on desirable substrates with the aid of 'Inkjet Printing', which is a viable, low-cost, and high-resolution technology. Inkjet printing is an excellent material deposition technique in the modern era owing to its easy settling over flexible substrates, simplistic emergence of large area image patterns with improved throughput, minimal cost, explicit resolution, and least waste generation. The present review provides state-of-the-art progress on LMOFs based (i) luminescent security ink fabrication with static and dynamic multinodal luminescent materials and (ii) sensory device formulation for the easy and instantaneous recognition of hazardous analytes through the 'Inkjet Printing' technology. This techno-chemical integration will be certainly beneficial to prevent the growth of counterfeit materials and monitor the bioaccumulation of hazardous analytes in our ecological system.
Collapse
Affiliation(s)
- Abhijit Hazra
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Muthusamy S, Zhu D, Rajalakshmi K, Zhu W, Wang S, Lee KB, Zhao L. Successive Detection of Zinc Ion and Citrate Using a Schiff Base Chemosensor for Enhanced Prostate Cancer Diagnosis in Biosystems. ACS APPLIED BIO MATERIALS 2021; 4:1932-1941. [PMID: 35014462 DOI: 10.1021/acsabm.0c01568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensitive and quantitative detection of prostate cancer (PC) requires a chemosensor with an applicable sensing strategy. A star-shaped Schiff base triaminoguanidine-integrated thiophene fluorophore TAT was rationally designed with nitrogen and sulfur atoms to coordinate with Zn2+ as the initial step and to chelate with citrate as the following step. Formation of the complex TAT-Zn2+ induced an intramolecular charge transfer and caused a red-shifted, Zn2+ concentration-dependent fluorescence at 507 nm. Chelation of TAT-Zn2+ with citrate led to an emission band at 692 nm upon an aggregation-induced emission mechanism. The distinctive fluorescence emissions of Zn2+ and citrate biomarkers were demonstrated first in on-site paper-based test strips showing gradually enhanced colors at yellow and red channels and second in both in vitro and in vivo by using PC3 cells and BALB/c nude mouse animal models, respectively. The in vitro test confirmed the mitochondria organelle-targeting property of TAT, and the in vivo performance manifested the successful application of the probe in recognizing the prostate cancer. This is the first applicable chemosensor that could be in continuous recognition of dual PC biomarkers Zn2+ and citrate in cancer diagnosis with a mitochondria organelle-targeting ability.
Collapse
Affiliation(s)
- Selvaraj Muthusamy
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Kanagaraj Rajalakshmi
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weihua Zhu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Kang-Bong Lee
- National Agenda Research Division, Korea Institute of Science & Technology, Hwarang-ro 14-gil 5 Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Tabasi ZA, Walsh JC, Bodwell GJ, Thompson DW, Zhao Y. Comparative study of the photophysical and crystallographic properties of 4-(9 H-pyreno[4,5- d]imidazol-10-yl)phenol and its alkylated derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj01102b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical and crystallographic properties of a para-hydroxphenyl-substituted pyrenoimidazole and its decylated analogues were investigated. The fluorescence of these compounds is sensitive to environmental acidity and basicity.
Collapse
Affiliation(s)
- Zahra A. Tabasi
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Joshua C. Walsh
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Graham J. Bodwell
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | - David W. Thompson
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Yuming Zhao
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| |
Collapse
|
7
|
Affiliation(s)
- Jinyu Sun
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
- Key Laboratory of Materials and Computational Chemistry Department of Chemistry, Xinzhou Teachers University Xinzhou 034000 P. R. China
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
8
|
Olutas M, Sagırlı A. Solvatochromic and solid-state emissive azlactone-based AIEE-active organic dye: Synthesis, photophysical properties and color-conversion LED application. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Lu B, Jian N, Qu K, Hu F, Liu X, Xu J, Zhao G. Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
He HF, Shao XT, Deng LL, Zhou JX, Zhu YY, Xia HY, Shen L, Zhao F. Triphenylamine or carbazole-based benzothiadiazole luminophors with remarkable solvatochromism and different mechanofluorochromic behaviors. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|