1
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Avian cryptochrome 4 binds superoxide. Comput Struct Biotechnol J 2024; 26:11-21. [PMID: 38204818 PMCID: PMC10776438 DOI: 10.1016/j.csbj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Flavin-binding cryptochromes are blue-light sensitive photoreceptors that have been implicated with magnetoreception in some species. The photocycle involves an intra-protein photo-reduction of the flavin cofactor, generating a magnetosensitive radical pair, and its subsequent re-oxidation. Superoxide (O2 • - ) is generated in the re-oxidation with molecular oxygen. The resulting O2 • - -containing radical pairs have also been hypothesised to underpin various magnetosensitive traits, but due to fast spin relaxation when tumbling in solution would require immobilisation. We here describe our insights in the binding of superoxide to cryptochrome 4 from C. livia based on extensive all-atom molecular dynamics studies and density-functional theory calculations. The positively charged "crypt" region that leads to the flavin binding pocket transiently binds O2 • - at 5 flexible binding sites centred on arginine residues. Typical binding times amounted to tens of nanoseconds, but exceptional binding events extended to several hundreds of nanoseconds and slowed the rotational diffusion, thereby realising rotational correlation times as large as 1 ns. The binding sites are particularly efficient in scavenging superoxide escaping from a putative generation site close to the flavin-cofactor, possibly implying a functional relevance. We discuss our findings in view of a potential magnetosensitivity of biological flavin semiquinone/superoxide radical pairs.
Collapse
Affiliation(s)
- Jean Deviers
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Fabien Cailliez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Daniel R. Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| |
Collapse
|
2
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Salerno KM, Domenico J, Le NQ, Balakrishnan K, McQuillen RJ, Stiles CD, Solov'yov IA, Martino CF. Long-Time Oxygen and Superoxide Localization in Arabidopsis thaliana Cryptochrome. J Chem Inf Model 2023; 63:6756-6767. [PMID: 37874902 DOI: 10.1021/acs.jcim.3c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.
Collapse
Affiliation(s)
- K Michael Salerno
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q Le
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Krithika Balakrishnan
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ryan J McQuillen
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D Stiles
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
- Centre for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
4
|
Qian L, van Riesen A, van der Zalm J, Manderville R, Chen A. Design and Electrochemical Study of Merocyanine Dyes: Influence of Substituents on the Redox Behaviors and Fouling Propensity at Ubiquitous Electrode Surfaces. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Salerno KM, Domenico J, Le NQ, Stiles CD, Solov’yov IA, Martino CF. Long-Time Oxygen Localization in Electron Transfer Flavoprotein. J Chem Inf Model 2022; 62:4191-4199. [PMID: 35998902 PMCID: PMC9472800 DOI: 10.1021/acs.jcim.2c00430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) exert a wide range of biological effects from beneficial regulatory function to deleterious oxidative stress. The electron transfer flavoprotein (ETF) is ubiquitous to life and is associated with aerobic metabolism and ROS production due to its location in the mitochondria. Quantifying oxygen localization within the ETF complex is critical for understanding the potential for electron transfer and radical pair formation between flavin adenine dinucleotide (FAD) cofactor and superoxide during ROS formation. Our study employed all-atom molecular dynamics simulations and identified several novel, long-lived oxygen binding sites within the ETF complex that appear near the FAD cofactor. Site locations, the local electrostatic environment, and characteristic oxygen binding times for each site were evaluated to establish factors that may lead to possible charge transfer reactions and superoxide formation within the ETF complex. The study revealed that some oxygen binding sites are naturally linked to protein domain features, suggesting opportunities to engineer and control ROS production and subsequent dynamics.
Collapse
Affiliation(s)
- K. Michael Salerno
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q. Le
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D. Stiles
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University
Oldenburg, Carl von Ossietzky
Straße 9-11, 26129 Oldenburg, Germany
- Centre
for Neurosensory Science, Carl von Ossietzky
University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F. Martino
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
6
|
Zadeh-Haghighi H, Simon C. Radical pairs may play a role in microtubule reorganization. Sci Rep 2022; 12:6109. [PMID: 35414166 PMCID: PMC9005667 DOI: 10.1038/s41598-022-10068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
The exact mechanism behind general anesthesia remains an open question in neuroscience. It has been proposed that anesthetics selectively prevent consciousness and memory via acting on microtubules (MTs). It is known that the magnetic field modulates MT organization. A recent study shows that a radical pair model can explain the isotope effect in xenon-induced anesthesia and predicts magnetic field effects on anesthetic potency. Further, reactive oxygen species are also implicated in MT stability and anesthesia. Based on a simple radical pair mechanism model and a simple mathematical model of MT organization, we show that magnetic fields can modulate spin dynamics of naturally occurring radical pairs in MT. We propose that the spin dynamics influence a rate in the reaction cycle, which translates into a change in the MT density. We can reproduce magnetic field effects on the MT concentration that have been observed. Our model also predicts additional effects at slightly higher fields. Our model further predicts that the effect of zinc on the MT density exhibits isotopic dependence. The findings of this work make a connection between microtubule-based and radical pair-based quantum theories of consciousness.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Deviers J, Cailliez F, de la Lande A, Kattnig DR. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals. J Chem Phys 2022; 156:025101. [PMID: 35032990 DOI: 10.1063/5.0078115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.
Collapse
Affiliation(s)
- Jean Deviers
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), 15 avenue Jean Perrin, 91405 Orsay, France
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| |
Collapse
|
8
|
Zadeh-Haghighi H, Simon C. Radical pairs can explain magnetic field and lithium effects on the circadian clock. Sci Rep 2022; 12:269. [PMID: 34997158 PMCID: PMC8742017 DOI: 10.1038/s41598-021-04334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drosophila's circadian clock can be perturbed by magnetic fields, as well as by lithium administration. Cryptochromes are critical for the circadian clock. Further, the radical pairs in cryptochrome also can explain magnetoreception in animals. Based on a simple radical pair mechanism model of the animal magnetic compass, we show that both magnetic fields and lithium can influence the spin dynamics of the naturally occurring radical pairs and hence modulate the circadian clock's rhythms. Using a simple chemical oscillator model for the circadian clock, we show that the spin dynamics influence a rate in the chemical oscillator model, which translates into a change in the circadian period. Our model can reproduce the results of two independent experiments, magnetic field and lithium effects on the circadian clock. Our model predicts that stronger magnetic fields would shorten the clock's period. We also predict that lithium influences the clock in an isotope-dependent manner. Furthermore, our model also predicts that magnetic fields and hyperfine interactions modulate oxidative stress. The findings of this work suggest that the quantum nature of radical pairs might play roles in the brain, as another piece of evidence in addition to recent results on xenon anesthesia and lithium effects on hyperactivity.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
10
|
Wan GJ, Jiang SL, Zhang M, Zhao JY, Zhang YC, Pan WD, Sword GA, Chen FJ. Geomagnetic field absence reduces adult body weight of a migratory insect by disrupting feeding behavior and appetite regulation. INSECT SCIENCE 2021; 28:251-260. [PMID: 32065478 DOI: 10.1111/1744-7917.12765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The geomagnetic field (GMF) is well documented for its essential role as a cue used in animal orientation or navigation. Recent evidence indicates that the absence of GMF (mimicked by the near-zero magnetic field, NZMF) can trigger stress-like responses such as reduced body weight, as we have previously shown in the brown planthopper, Nilaparvata lugens. In this study, we found that consistent with the significantly decreased body weight of newly emerged female (-14.67%) and male (-13.17%) adult N. lugens, the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02% in 5th instar nymphs reared under the NZMF versus GMF. Interestingly, 5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels (+16.98% and +20.05%; 24 h and 48 h after molting), which are associated with food aversion, and expression patterns of their appetite-related neuropeptide genes (neuropeptide F, down-regulated overall; short neuropeptide F, down-regulated overall; adipokinetic hormone, up-regulated overall; and adipokinetic hormone receptor, down-regulated overall) were also altered under the absence of GMF in a manner consistent with diminishing appetite. Moreover, the expressions of the potential magnetosensor cryptochromes (Crys) were found significantly altered under the absence of GMF, indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms. These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation. Our results highlight that GMF could be necessary for the maintenance of energy homeostasis in insects.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shou-Lin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Huix-Rotllant M, Ferré N. Analytic Energy, Gradient, and Hessian of Electrostatic Embedding QM/MM Based on Electrostatic Potential-Fitted Atomic Charges Scaling Linearly with the MM Subsystem Size. J Chem Theory Comput 2020; 17:538-548. [DOI: 10.1021/acs.jctc.0c01075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Schwinn K, Ferré N, Huix-Rotllant M. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein. Phys Chem Chem Phys 2020; 22:12447-12455. [PMID: 32458897 DOI: 10.1039/d0cp01714k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptochromes are a class of flavoproteins proposed as candidates to explain magnetoreception of animals, plants and bacteria. The main hypothesis is that a biradical is formed upon blue-light absorption by flavin adenine dinucleotide (FAD). In a protein milieu, the oxidized form of FAD can be reduced, leading to four redox derivative forms: anionic and neutral semi-reduced radicals, and anionic and neutral fully reduced forms. All these forms have a characteristic electronic absorption spectrum, with a strong vibrational resolution. Here, we carried out a normal mode analysis at the electrostatic embedding QM/MM level of theory to compute the vibrationally resolved absorption spectra of the five redox forms of FAD embedded in a plant cryptochrome. We show that explicitly accounting for vibrational broadening contributions to electronic transitions is essential to reproduce the experimental spectra. In the case of the neutral radical form of FAD, the absorption spectrum is reproduced only if the presence of a tryptophan radical is considered.
Collapse
|
13
|
Mondal P. In silico decryption of serotonin-receptor binding: local non-covalent interactions and long-range conformational changes. RSC Adv 2020; 10:37995-38003. [PMID: 35515142 PMCID: PMC9057181 DOI: 10.1039/d0ra05559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/08/2021] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
Serotonin-receptor binding is the key step in the process behind serotonin functionality, including several psychological and physiological behaviours. This study is focused on identifying the main non-covalent interactions controlling the stability of serotonin-receptor complexes as well as the main conformational changes in the receptor due to serotonin-receptor binding using classical molecular dynamics simulations and quantum chemical calculations. A qualitative analysis based on two order parameters ((i) the centre of mass distance and (ii) the angle between the surface normals of each aromatic residue and serotonin in the binding site) on the serotonin-receptor complex trajectory suggests that the T-type stacking interaction is predominant in the binding site. Quantum chemical calculations of the stacking interaction energy provide the quantitative contributions of important aromatic residues to the stabilization of the complex. Furthermore, a three body stacking interaction (named 'L'-type) was observed and likely contributes to the stability of the complex. Direct and water-mediated hydrogen bonding between the residues in the binding site and serotonin contributes to the complex stability. Principal component analysis of the molecular dynamics simulation trajectory of the serotonin-receptor complex and the apo-receptor in water indicates that the whole receptor is significantly stabilized due to serotonin binding. An analysis based on the dynamic cross correlation function reflects the strong correlation between trans-membrane (TM)3, TM5, TM6 (containing residues responsible for the stacking interaction and hydrogen bonding) and mini-G0 which may participate in signal transduction leading to the functionality of serotonin.
Collapse
Affiliation(s)
- Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences and Technologies, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 Andhra Pradesh India +91 877 2500 926
| |
Collapse
|
14
|
Babcock N, Kattnig DR. Electron-Electron Dipolar Interaction Poses a Challenge to the Radical Pair Mechanism of Magnetoreception. J Phys Chem Lett 2020; 11:2414-2421. [PMID: 32141754 PMCID: PMC7145362 DOI: 10.1021/acs.jpclett.0c00370] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
A visual magnetic sense in migratory birds has been hypothesized to rely on a radical pair reaction in the protein cryptochrome. In this model, magnetic sensitivity originates from coherent spin dynamics, as the radicals couple to magnetic nuclei via hyperfine interactions. Prior studies have often neglected the electron-electron dipolar (EED) coupling from this hypothesis. We show that EED interactions suppress the anisotropic response to the geomagnetic field by the radical pair mechanism in cryptochrome and that this attenuation is unlikely to be mitigated by mutual cancellation of the EED and electronic exchange coupling, as previously suggested. We then demonstrate that this limitation may be overcome by extending the conventional model to include a third, nonreacting radical. We predict that hyperfine effects could work in concert with three-radical dipolar interactions to tailor a superior magnetic response, thereby providing a new principle for magnetosensitivity with applications for sensing, navigation, and the assessment of biological magnetic field effects.
Collapse
Affiliation(s)
- Nathan
S. Babcock
- Living Systems Institute and Department
of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United
Kingdom
| | - Daniel R. Kattnig
- Living Systems Institute and Department
of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United
Kingdom
| |
Collapse
|
15
|
Player TC, Hore PJ. Viability of superoxide-containing radical pairs as magnetoreceptors. J Chem Phys 2020; 151:225101. [PMID: 31837685 DOI: 10.1063/1.5129608] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of night-migratory songbirds to sense the direction of the Earth's magnetic field is increasingly attributed to a photochemical mechanism in which the magnetic field acts on transient radical pairs in cryptochrome flavoproteins located in the birds' eyes. The magnetically sensitive species is commonly assumed to be [FAD•- TrpH•+], formed by sequential light-induced intraprotein electron transfers from a chain of tryptophan residues to the flavin adenine dinucleotide chromophore. However, some evidence points to superoxide, O2 •-, as an alternative partner for the flavin radical. The absence of hyperfine interactions in O2 •- could lead to a more sensitive magnetic compass, but only if the electron spin relaxation of the O2 •- radical is much slower than normally expected for a small mobile radical with an orbitally degenerate electronic ground state. In this study we use spin dynamics simulations to model the sensitivity of a flavin-superoxide radical pair to the direction of a 50 μT magnetic field. By varying parameters that characterize the local environment and molecular dynamics of the radicals, we identify the highly restrictive conditions under which a O2 •--containing radical pair could form the basis of a geomagnetic compass sensor. We conclude that the involvement of superoxide in compass magnetoreception must remain highly speculative until further experimental evidence is forthcoming.
Collapse
Affiliation(s)
- Thomas C Player
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Hammad M, Albaqami M, Pooam M, Kernevez E, Witczak J, Ritz T, Martino C, Ahmad M. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem Photobiol Sci 2020; 19:341-352. [DOI: 10.1039/c9pp00469f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arabidopsis cryptochrome-dependent magnetosensitivity occurs via a reaction that does not require light. This excludes radical pairs formed during light-triggered electron transfer to the flavin.
Collapse
Affiliation(s)
- M. Hammad
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - M. Albaqami
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - M. Pooam
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - E. Kernevez
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - J. Witczak
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| | - T. Ritz
- Department of Physics and Astronomy
- University of California at Irvine
- USA
| | - C. Martino
- Department of Biomedical and Chemical Engineering and Science
- Florida Institute of Technology
- Melbourne
- USA
| | - M. Ahmad
- Sorbonne Universités – UPMC Paris 6 – CNRS
- UMR8256 - IBPS
- Photobiology Research Group
- 75005 Paris
- France
| |
Collapse
|