1
|
Zha J, Xia F. Developing Hybrid All-Atom and Ultra-Coarse-Grained Models to Investigate Taxol-Binding and Dynein Interactions on Microtubules. J Chem Theory Comput 2023; 19:5621-5632. [PMID: 37489636 DOI: 10.1021/acs.jctc.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Zhang C, Zhao DX, Feng Y, Wang J, Yang ZZ. Energetics and J-coupling constants for Ala, Gly, and Val peptides demonstrated using ABEEM polarizable force field in vacuo and an aqueous solution. Phys Chem Chem Phys 2022; 24:4232-4250. [DOI: 10.1039/d1cp05676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an atom-bond electronegativity equalisation method at the σπ-level (ABEEM) polarisable force field (PFF) for peptides is presented. ABEEM PFF utilises a fluctuating charge model to explicitly describe...
Collapse
|
3
|
Zha J, Zhang Y, Xia K, Gräter F, Xia F. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Front Mol Biosci 2021; 7:632122. [PMID: 33659274 PMCID: PMC7917235 DOI: 10.3389/fmolb.2020.632122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
Collapse
Affiliation(s)
- Jinyin Zha
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Frauke Gräter
- Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloβ-Wolfsbrunnenweg 35, Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraβe 29, Heidelberg, Germany
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Cao Z, Zhang JZ, Xia F. Double-Well Ultra-Coarse-Grained Model to Describe Protein Conformational Transitions. J Chem Theory Comput 2020; 16:6678-6689. [PMID: 32926616 DOI: 10.1021/acs.jctc.0c00551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double-well model is usually used to describe the conformational transition between two states of a protein. Since conformational changes usually occur within a relatively large time scale, coarse-grained models are often used to accelerate the dynamic process due to their inexpensive computational cost. In this work, we develop a double-well ultra-coarse-grained (DW-UCG) model to describe the conformational transitions of the adenylate kinase, glutamine-binding protein, and lactoferrin. The coarse-grained simulation results show that the DW-UCG model of adenylate kinase captures the crucial intermediate states in the LID-closing and NMP-closing pathways, reflecting the key secondary structural changes in the conformational transition. A comparison of the different DW-UCG models of adenylate kinase indicates that an appropriate choice of bead resolution could generate the free energy landscape that is comparable to that from the residue-based model. The coarse-grained simulations for the glutamine-binding protein and lactoferrin also demonstrate that the DW-UCG model is valid in reproducing the correct two-state behavior for their functional study, which indicates the potential application of the DW-UCG model in investigating the mechanism of conformational changes of large proteins.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - John Zenghui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
5
|
Wu Z, Zhang Y, Zhang JZ, Xia K, Xia F. Determining Optimal Coarse-Grained Representation for Biomolecules Using Internal Cluster Validation Indexes. J Comput Chem 2019; 41:14-20. [PMID: 31568566 DOI: 10.1002/jcc.26070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
The development of ultracoarse-grained models for large biomolecules needs to derive the optimal number of coarse-grained (CG) sites to represent the targets. In this work, we propose to use the statistical internal cluster validation indexes to determine the optimal number of CG sites that are optimized based on the essential dynamics coarse-graining method. The calculated curves of Calinski-Harabasz and Silhouette Coefficient indexes exhibit the extrema corresponding to the similar CG numbers. The calculated ratios of the optimal CG numbers to the residue numbers of fine-grained models are in the range from 4 to 2. The comparison of the stability of index results indicates that Calinski-Harabasz index is the better choice to determine the optimal CG representation in coarse-graining. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhenliang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuwei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.,School of Biological Sciences, Nanyang Technological University, 637371, Singapore
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| |
Collapse
|