1
|
Haddad B, Pandey DK, Singh DK, Paolone A, Drai M, Villemin D, Bresson S. Effect of isopropyl side chain branching and different anions on electronic structure, vibrational spectra, and hydrogen bonding of isopropyl-imidazolium-based ionic liquids: Experimental and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122325. [PMID: 36634492 DOI: 10.1016/j.saa.2023.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In the present work, four branched methylated, 1,2-dimethyl-3-isopropyl-imidazolium (i-[C3Dmim+]) and protonated,1-methyl-3-isopropyl-imidazolium (i-[C3mim+])-based ionic liquids (ILs) with varying anion (Br-, BF4-, PF6-, and NTf2-) were synthesized and investigated by NMR, infrared (IR) and Raman spectroscopy. Based on infrared and Raman spectroscopy, complete vibrational assignments have been performed. The IR and Raman analysis revealed that the vibrational spectra are virtually unaffected upon methylation, while significant frequency changes were observed by changing anion. Furthermore, to determine the electronic structure, energetic stability, and vibrational properties of these i-[C3Dmim]Y, i-[C3mim]Y (Y = Br, BF4, PF6, and NTf2) ion pairs, quantum chemical calculations including the dispersion correction method are performed both on single ions and on ionic couples. The calculated electron density was analyzed to expose non-covalent intra- and interionic interactions by the quantum theory of atoms in molecules (AIM) and interpreted in terms of both anion dependence and type of interaction. Computational results suggest that for all ionic couples the most energetically stable configuration is obtained with the anions located close to the C2 position of the imidazolium cation. However, in the case of i-[C3mim]NTf2 and i-[C3Dmim]BF4, similar energies were obtained in configurations 2 and 3 where the anion is located above the imidazolium ring. For i-[C3mim]Br a stronger hydrogen bond is predicted than for other studied ILs. Calculations indicate that a red shift of the CH stretching bands should occur due to hydrogen bonding; indeed, such displacement of bands is experimentally observed.
Collapse
Affiliation(s)
- Boumediene Haddad
- Department of Chemistry, Dr. Moulay Tahar University of Saida, 20000 Saida, Algeria; Chemistry Laboratory of Synthesis, Properties, and Applications (CLSPA-Saida), 20000 Saida, Algeria; Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, University of Caen, 6 Boulevard Maréchal Juin, 14050 Caen, France.
| | - Deepak K Pandey
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Annalisa Paolone
- Consiglio Nazionale delle Ricerche, Istituto dei SistemiComplessi, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Mokhtar Drai
- Chemistry Laboratory of Synthesis, Properties, and Applications (CLSPA-Saida), 20000 Saida, Algeria; Université DjillaliLiabes, BP 89, 22000 Sidi-Bel-Abbes, Algeria
| | - Didier Villemin
- Laboratoire de Chimie Moléculaire et Thio-organique, ENSICAEN, University of Caen, 6 Boulevard Maréchal Juin, 14050 Caen, France
| | - Serge Bresson
- Laboratoire de Physique des Systèmes Complexes, Université Picardie Jules Verne, 33 rue St Leu, 80039 Amiens cedex, France
| |
Collapse
|
2
|
Ambrico M, Lasalvia M, Ligonzo T, Ambrico PF, Perna G, Capozzi V. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy. Med Phys 2020; 47:5373-5382. [PMID: 32750750 DOI: 10.1002/mp.14425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The response of human cells to applied electrical signals depends on the cellular health status, because it is influenced by the composition and structure of the main cellular components. Therefore, electrical impedance-based techniques can be considered as sensitive tools to investigate healthy or disease state at cellular level. The goal of this study is to show that different types of in vitro cellular lines, related to different health status, can be differentiated using impedance spectra analysis. METHODS Three different types of human breast cell line, corresponding to healthy, cancerous, and metastatic adenocarcinoma cells, were measured by means of electrical impedance spectroscopy. By modeling the investigated cells with proper resistive and capacitive circuital elements, the magnitude of the cell electrical components and spectra of real and imaginary part of dielectric permittivity were obtained. The latter were subsequently examined with a commonly adopted mathematical model, in order to estimate the values of specific dielectric parameters for the three different cellular lines. RESULTS The relative variation of cellular capacitance with respect to that of the culture medium, estimated at 100 Hz, has a larger value for the two types of cancerous cells with respect to the noncancerous type. Furthermore, the ratio between the real and imaginary part of the dielectric permittivity function has larger values for metastatic cells with respect to the normal and nonmetastatic ones. Therefore, the mentioned relative capacitance allows to discriminate between normal and cancerous cells, whereas the results obtained for the dielectric function can discriminate between metastatic and nonmetastatic cells. CONCLUSIONS This study can be considered as an exploratory investigation of evaluating in vitro the health status of humans cells using selected electrical impedance parameters as potential markers. The obtained results highlight that a standard cultureware system, provided with interdigitated electrodes and appropriate impedance parameters, that is, cellular capacitance and the ratio between the imaginary and real part of cellular dielectric function, can be used to discriminate between healthy and cancerous breast cell lines, as well as different malignancy degrees.
Collapse
Affiliation(s)
- M Ambrico
- CNR-ISTP Istituto per la Scienza e Tecnologia dei Plasmi - Sede di Bari, Via Amendola 122/D, Bari, 70125, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy
| | - M Lasalvia
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| | - T Ligonzo
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento Interateneo di Fisica "M. Merlin" Università degli Studi di Bari, Via Amendola 173, Bari, 70125, Italy
| | - P F Ambrico
- CNR-ISTP Istituto per la Scienza e Tecnologia dei Plasmi - Sede di Bari, Via Amendola 122/D, Bari, 70125, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy
| | - G Perna
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| | - V Capozzi
- Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Amendola Via Amendola 173, Bari, 70125, Italy.,Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Viale L. Pinto 1, Foggia, 71122, Italy
| |
Collapse
|
3
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Paul Meredith
- Department of Physics Swansea University Vivian Building, Singleton Campus SA2 8PP Swansea UK
| | - Markus Buehler
- Laboratory for Atomistic and Molecular Mechanics School of Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|