1
|
Prophet AM, Polley K, Brown EK, Limmer DT, Wilson KR. Distinguishing Surface and Bulk Reactivity: Concentration-Dependent Kinetics of Iodide Oxidation by Ozone in Microdroplets. J Phys Chem A 2024; 128:8970-8982. [PMID: 39360890 DOI: 10.1021/acs.jpca.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Iodine oxidation reactions play an important role in environmental, biological, and industrial contexts. The multiphase reaction between aqueous iodide and ozone is of particular interest due to its prevalence in the marine atmosphere and unique reactivity at the air-water interface. Here, we explore the concentration dependence of the I- + O3 reaction in levitated microdroplets under both acidic and basic conditions. To interpret the experimental kinetics, molecular simulations are used to benchmark a kinetic model, which enables insight into the reactivity of the interface, the nanometer-scale subsurface region, and the bulk interior of the droplet. For all experiments, a kinetic description of gas- and liquid-phase diffusion is critical to interpreting the results. We find that the surface dominates the iodide oxidation kinetics under concentrated and acidic conditions, with the reactive uptake coefficient approaching an upper limit of 10-2 at pH 3. In contrast, reactions in the subsurface dominate under more dilute and alkaline conditions, with inhibition of the surface reaction at pH 12 and an uptake coefficient that is 10× smaller. The origin of a changing surface mechanism with pH is explored and compared to previous ozone-dependent measurements.
Collapse
Affiliation(s)
- Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Emily K Brown
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Xiao T, Yang JL, Zhang B, Wu J, Li J, Mai W, Fan HJ. All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery. Angew Chem Int Ed Engl 2024; 63:e202318470. [PMID: 38179860 DOI: 10.1002/anie.202318470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.
Collapse
Affiliation(s)
- Tao Xiao
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jiawen Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Flexible Electronics Technology, Tsinghua University, Jiaxing, 314000, China
| | - Jinliang Li
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mai
- Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
3
|
Prophet AM, Polley K, Van Berkel GJ, Limmer DT, Wilson KR. Iodide oxidation by ozone at the surface of aqueous microdroplets. Chem Sci 2024; 15:736-756. [PMID: 38179528 PMCID: PMC10762724 DOI: 10.1039/d3sc04254e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.
Collapse
Affiliation(s)
- Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Energy NanoScience Institute Berkeley California 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
4
|
McKinnon BI, Marlton SJP, Ucur B, Bieske EJ, Poad BLJ, Blanksby SJ, Trevitt AJ. Actinic Wavelength Action Spectroscopy of the IO - Reaction Intermediate. J Phys Chem Lett 2021; 12:11939-11944. [PMID: 34878800 DOI: 10.1021/acs.jpclett.1c03456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iodinate anions are important in the chemistry of the atmosphere where they are implicated in ozone depletion and particle formation. The atmospheric chemistry of iodine is a complex overlay of neutral-neutral, ion-neutral, and photochemical processes, where many of the reactions and intermediates remain poorly characterized. This study targets the visible spectroscopy and photostability of the gas-phase hypoiodite anion (IO-), the initial product of the I- + O3 reaction, by mass spectrometry equipped with resonance-enhanced photodissociation and total ion-loss action spectroscopies. It is shown that IO- undergoes photodissociation to I- + O (3P) over 637-459 nm (15700-21800 cm-1) because of excitation to the bound first singlet excited state. Electron photodetachment competes with photodissociation above the electron detachment threshold of IO- at 521 nm (19200 cm-1) with peaks corresponding to resonant autodetachment involving the singlet excited state and the ground state of neutral IO possibly mediated by a dipole-bound state.
Collapse
Affiliation(s)
- Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Bhujel M, Marshall DL, Maccarone AT, McKinnon BI, Trevitt AJ, da Silva G, Blanksby SJ, Poad BLJ. Gas phase reactions of iodide and bromide anions with ozone: evidence for stepwise and reversible reactions. Phys Chem Chem Phys 2020; 22:9982-9989. [PMID: 32363365 DOI: 10.1039/d0cp01498b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the impacts - both positive and negative - of atmospheric ozone for life on Earth, there remain significant gaps in our knowledge of the products, mechanisms and rates of some of its most fundamental gas phase reactions. This incomplete understanding is largely due to the experimental challenges involved in the study of gas-phase reactions of ozone and, in particular, the identification of short-lived reaction intermediates. Here we report direct observation of the stepwise reaction of the halide anions iodide (I-) and bromide (Br-) with ozone to produce XO3- (where X = I and Br, respectively). These results substantially revise the rate constant for the I- + O3 reaction to 1.1 (± 0.5) × 10-12 cm3 molecule-1 s-1 (0.13% efficiency) and the Br- + O3 reaction to 6.2 (± 0.4) × 10-15 cm3 molecule-1 s-1 (0.001% efficiency). Exploiting five-orders of temporal dynamic range on a linear ion trap mass spectrometer enabled explicit measurement of the rate constants for the highly efficient intermediate, XO- + O3 and XO2- + O3, reactions thus confirming a stepwise addition of three oxygen atoms (i.e., X- + 3O3 → XO3- + 3O2) with the first addition representing the rate determining step. Evidence is also presented for (i) slow reverse reactions of XO- and XO2-, but not XO3-, with molecular oxygen and (ii) the photodissociation of IO-, IO2- and IO3- to release I-. Collectively, these results suggest relatively short lifetimes for Br- and I- in the tropospere with direct gas-phase oxidation by ozone playing a role in both the formation of atmospheric halogen oxides and, conversely, in the ozone depletion associated with springtime polar bromine explosion events.
Collapse
Affiliation(s)
- Mahendra Bhujel
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Alan T Maccarone
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin I McKinnon
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane QLD 4001, Australia.
| |
Collapse
|
6
|
Moreno C, Baeza-Romero MT, Sanz M, Gálvez Ó, López Arza V, Ianni JC, Espíldora E. Iodide conversion to iodate in aqueous and solid aerosols exposed to ozone. Phys Chem Chem Phys 2020; 22:5625-5637. [PMID: 32101185 DOI: 10.1039/c9cp05601g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aqueous-phase and surface reactions of ozone (O3) with iodide (I-) in/on seawater have been recently found to be a strong atmospheric source of iodine. In addition, ozone also reacts with I- in solid and aqueous sea-salt aerosol. However, the primary products of the heterogeneous reactions of ozone with I- have not been clarified. In this paper, solid and aqueous KI aerosols have been exposed to ozone in an aerosol flow tube system and I- and iodate (IO3-) concentrations have been measured by UV-Vis spectroscopy. The results of these experiments have been combined with a kinetic model to elucidate the primary products of the aqueous and surface reactions. The reaction of ozone with aqueous iodide has been inferred to originate different products depending on whether it occurs at the surface via O3 adsorption (product I2-) or in the aqueous phase via O3 solvation (product IO-). The surface reaction of ozone with solid KI in the presence of water vapor forms KIO3, and other species, which are likely to be gaseous. Although the reactions have been studied in aerosols, the results can be extrapolated to aqueous solutions as well.
Collapse
Affiliation(s)
- Carolina Moreno
- Universidad de Castilla-La Mancha, Escuela de Ingeniería Industrial y Aeroespacial, 45071, Toledo, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Pedersen HB, Elm J, Frederiksen CH, Jessen SPS, Teiwes R, Bilde M. The reaction of isotope-substituted hydrated iodide I(H182O) − with ozone: the reactive influence of the solvent water molecule. Phys Chem Chem Phys 2020; 22:19080-19088. [DOI: 10.1039/d0cp03219k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an investigation of the reaction of isotope-substituted hydrated iodide I(H182O)− with ozone 16O3 to examine the involvement of the water molecules in the oxidation reactions that terminate with the formation of IO3−.
Collapse
Affiliation(s)
- Henrik B. Pedersen
- Department of Physics and Astronomy
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Jonas Elm
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | | - Simon P. S. Jessen
- Department of Physics and Astronomy
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Ricky Teiwes
- Department of Physics and Astronomy
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Merete Bilde
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
8
|
Teiwes R, Elm J, Bilde M, Pedersen HB. Reply to the 'Comment on "Atmospheric chemistry of iodine anions: elementary reactions of I -, IO -, and IO with ozone studied in the gas-phase at 300 K using an ion trap"' by D. Britz, Phys. Chem. Chem. Phys., 2019, 21, C9CP03851E. Phys Chem Chem Phys 2019; 21:22656. [PMID: 31573018 DOI: 10.1039/c9cp05104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reply to the comment by Dieter Britz on two recent papers in Physical Chemistry Chemical Physics. The comment presents a valuable, however, less flexible, alternative to the analysis performed in these papers and as such has no impact on any of the scientific results reported in the two publications.
Collapse
Affiliation(s)
- Ricky Teiwes
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jonas Elm
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Merete Bilde
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
9
|
Moreno C, Baeza-Romero MT. A kinetic model for ozone uptake by solutions and aqueous particles containing I - and Br -, including seawater and sea-salt aerosol. Phys Chem Chem Phys 2019; 21:19835-19856. [PMID: 31497813 DOI: 10.1039/c9cp03430g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heterogeneous interactions of gaseous ozone (O3) with seawater and with sea-salt aerosols are known to generate volatile halogen species, which, in turn, lead to further destruction of O3. Here, a kinetic model for the interaction of ozone (O3) with Br- and I- solutions and aqueous particles has been proposed that satisfactorily explains previous literature studies about this process. Apart from the aqueous-phase reactions X- + O3 (X = I, Br), the interaction also involves the surface reactions X- + O3 that occur via O3 adsorption on the aqueous surface. In single salt solutions and aerosols, the partial order in ozone and the total order of the surface reactions are one, but the apparent total order is second order because the number of ozone sites where reaction can occur is equal to the surficial concentration of X- ([X-]surf). In the presence of Cl-, the surface reactions are enhanced by a factor equal to , where and . Therefore, we have inferred that Cl- acts as a catalyst in the surface reactions X- + O3. The model has been applied to estimate ozone uptake by the reaction with these halides in/on seawater and in/on sea-salt aerosol, where it has been concluded that the Cl--catalyzed surface reaction is important relative to total ozone uptake and should therefore be considered to model Y/YO (Y = I, Br, Cl) levels in the troposphere.
Collapse
Affiliation(s)
- Carolina Moreno
- Escuela de Ingeniería Industrial y Aeroespacial, Universidad de Castilla-La Mancha, 45071, Toledo, Spain.
| | | |
Collapse
|
10
|
Britz D. Comment on “Atmospheric chemistry of iodine anions: elementary reactions of I −, IO − and IO 2− with ozone studied in the gas-phase at 300 K using an ion trap” Teiwes et al., Phys. Chem. Chem. Phys., 2018, 20, 20608. Phys Chem Chem Phys 2019; 21:22654-22655. [DOI: 10.1039/c9cp03851e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analytical solution for the set of differential equations solved numerically in the original article
Collapse
Affiliation(s)
- Dieter Britz
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|