1
|
Weimar J, Hirschmann F, Oettel M. Effective patchiness from critical points of a coarse-grained protein model with explicit shape and charge anisotropy. SOFT MATTER 2024; 20:8455-8467. [PMID: 39400290 DOI: 10.1039/d4sm00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colloidal model systems are successful in rationalizing emergent phenomena like aggregation, rheology and phase behaviour of protein solutions. Colloidal theory in conjunction with isotropic interaction models is often employed to estimate the stability of such solutions. In particular, a universal criterion for the reduced second virial coefficient at the critical point is frequently invoked which is based on the behavior of short-range attractive fluids (Noro-Frenkel rule, ). However, if anisotropic models for the protein-protein interaction are considered, e.g. the Kern-Frenkel (KF) patchy particle model, the value of the criterion is shifted to lower values and explicitly depends on the number of patches. If an explicit shape anisotropy is considered, as e.g. in a coarse-grained protein model, the normalization of becomes ambiguous to some extent, as no unique exclusion volume can be defined anymore. Here, we investigate a low-resolution, coarse-grained model for the globular protein bovine serum albumin (BSA) and study effects of charge-anisotropy on the phase diagram (determined by simulations) at the isoelectric point. We present methods of assigning an "effective patchiness" to our protein model by comparing its critical properties to the KF model. We find that doubling the native charges increases the critical temperature Tc by ≈14% and that our BSA model can be compared to a 3 to 5 patch KF model. Finally, we argue that applying existing criteria from colloidal theory should be done with care, due to multiple, physically plausible ways of how to assign effective diameters to shape-anisotropic models.
Collapse
Affiliation(s)
- Jens Weimar
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Frank Hirschmann
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Le TP, Cavalcanti L, Tellam JP, Malo de Molina P. Effect of the Protein Chain Conformation on the Collapse into Nanoparticles. Biomacromolecules 2024; 25:6602-6610. [PMID: 39228081 DOI: 10.1021/acs.biomac.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Protein single-chain nanoparticles can outperform synthetic nanoparticles in biomedical applications due to enhanced biocompatibility. Compared to synthetic (co)polymers, the chemical complexity of proteins challenges chain conformation control. Here, we investigate the impact of the precursor chain conformation of bovine serum albumin (BSA) on the nanoparticle structure after intramolecular cross-linking. We explore the urea concentration (denaturant), pH, salt, cross-linker length, and concentration. Small-angle neutron scattering and dynamic light scattering experiments reveal a shrinking chain conformation upon cross-linking. However, the ability to collapse depends on solvent conditions: more expanded chains collapse more, whereas proteins that are already compact barely change in size upon cross-linking. Static light scattering measurements demonstrate that binding is primarily intramolecular. The use of a shorter cross-linker does not lead to collapse of extended chains. Overall, BSA exhibits a similar behavior to that of polymer nanoparticles, which then allows to harness the precursor conformation for morphological control.
Collapse
Affiliation(s)
- Thu Phuong Le
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 3, E-20018 Donostia, Spain
| | - Leide Cavalcanti
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K
| | - James P Tellam
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE─Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
3
|
Harris G, Bradshaw ML, Halsall DJ, Scott DJ, Unwin RJ, Norden AGW. Is there reversible dimerization of albumin in blood plasma? And does it matter? Exp Physiol 2024; 109:1663-1671. [PMID: 39177455 PMCID: PMC11442857 DOI: 10.1113/ep092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Most albumin in blood plasma is thought to be monomeric with some 5% covalently dimerized. However, many reports in the recent biophysics literature find that albumin is reversibly dimerized or even oligomerized. We review data on this from X-ray crystallography and diverse biophysical techniques. The number-average molecular weight of albumin would be increased by dimerization, affecting size-dependent filtration processes of albumin such as at the glycocalyx of the capillary endothelium and the podocyte slit-diaphragm of the renal glomerulus. If correct, and depending on characteristics of the process, such as Kd, reversible dimerization of albumin in plasma would have major implications for normal physiology and medicine. We present quantitative models of the impact of dimerization on albumin molecular forms, on the number-average molecular weight of albumin, and estimate the effect on the colloid osmotic pressure of albumin. Dimerization reduces colloid osmotic pressure as total albumin concentration increases below that expected in the absence of dimerization. Current models of albumin filtration by the renal glomerulus would need revision to account for the dynamic size of albumin molecules filtered. More robust biophysical data are needed to give a definitive answer to the questions posed and we suggest possible approaches to this.
Collapse
Affiliation(s)
- Gemma Harris
- Research Complex at Harwell, Rutherford Appleton LaboratoryDidcotUK
| | | | - David J. Halsall
- Department of Clinical BiochemistryAddenbrooke's HospitalCambridgeUK
| | - David J. Scott
- School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | | |
Collapse
|
4
|
Beck C, Grimaldo M, Braun MK, Bühl L, Matsarskaia O, Jalarvo NH, Zhang F, Roosen-Runge F, Schreiber F, Seydel T. Temperature and salt controlled tuning of protein clusters. SOFT MATTER 2021; 17:8506-8516. [PMID: 34490428 DOI: 10.1039/d1sm00418b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Marco Grimaldo
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Lena Bühl
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Niina H Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden.
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
5
|
Balacescu L, Brandl G, Radulescu A. Separation of the inelastic and elastic scattering in time-of-flight mode on the pinhole small-angle neutron scattering diffractometer K-WS-2. J Appl Crystallogr 2021; 54:1217-1224. [PMID: 34429724 PMCID: PMC8366428 DOI: 10.1107/s1600576721006610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 02/19/2023] Open
Abstract
To study and control the incoherent inelastic background in small-angle neutron scattering, which makes a significant contribution to the detected scattering from hydrocarbon systems, the KWS-2 small-angle neutron scattering diffractometer operated by the Jülich Centre for Neutron Science (JCNS) at Heinz-Maier Leibnitz Zentrum (MLZ), Garching, Germany, was equipped with a secondary single-disc chopper that is placed in front of the sample stage. This makes it possible to record in time-of-flight mode the scattered neutrons in the high-Q regime of the instrument (i.e. short incoming wavelengths and detection distances) and to discard the inelastic component from the measured data. Examples of measurements on different materials routinely used as standard samples, sample containers and solvents in the experiments at KWS-2 are presented. When only the elastic region of the spectrum is used in the data-reduction procedure, a decrease of up to two times in the incoherent background of the experimentally measured scattering cross section may be obtained. The proof of principle is demonstrated on a solution of bovine serum albumin in D2O.
Collapse
Affiliation(s)
- Livia Balacescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85747, Germany
- Physikalisches Institut (IA), Rheinisch-Westfälische Technische Hochschule (RWTH), Otto-Blumenthal Strasse, Aachen, 52074, Germany
| | - Georg Brandl
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85747, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, Garching, 85747, Germany
| |
Collapse
|
6
|
Reversible Dimerization of Human Serum Albumin. Molecules 2020; 26:molecules26010108. [PMID: 33383640 PMCID: PMC7795135 DOI: 10.3390/molecules26010108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Pulsed Dipolar Spectroscopy (PDS) methods of Electron Paramagnetic Resonance (EPR) were used to detect and characterize reversible non-covalent dimers of Human Serum Albumin (HSA), the most abundant protein in human plasma. The spin labels, MTSL and OX063, were attached to Cys-34 and these chemical modifications of Cys-34 did affect the dimerization of HSA, indicating that other post-translational modifications can modulate dimer formation. At physiologically relevant concentrations, HSA does form weak, non-covalent dimers with a well-defined structure. Dimer formation is readily reversible into monomers. Dimerization is very relevant to the role of HSA in the transport, binding, and other physiological processes.
Collapse
|
7
|
Balacescu L, Schrader TE, Radulescu A, Zolnierczuk P, Holderer O, Pasini S, Fitter J, Stadler AM. Transition between protein-like and polymer-like dynamic behavior: Internal friction in unfolded apomyoglobin depends on denaturing conditions. Sci Rep 2020; 10:1570. [PMID: 32005832 PMCID: PMC6994677 DOI: 10.1038/s41598-020-57775-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
Abstract
Equilibrium dynamics of different folding intermediates and denatured states is strongly connected to the exploration of the conformational space on the nanosecond time scale and might have implications in understanding protein folding. For the first time, the same protein system apomyoglobin has been investigated using neutron spin-echo spectroscopy in different states: native-like, partially folded (molten globule) and completely unfolded, following two different unfolding paths: using acid or guanidinium chloride (GdmCl). While the internal dynamics of the native-like state can be understood using normal mode analysis based on high resolution structural information of myoglobin, for the unfolded and even for the molten globule states, models from polymer science are employed. The Zimm model accurately describes the slowly-relaxing, expanded GdmCl-denaturated state, ignoring the individuality of the different aminoacid side chain. The dynamics of the acid unfolded and molten globule state are similar in the framework of the Zimm model with internal friction, where the chains still interact and hinder each other: the first Zimm relaxation time is as large as the internal friction time. Transient formation of secondary structure elements in the acid unfolded and presence of α-helices in the molten globule state lead to internal friction to a similar extent.
Collapse
Affiliation(s)
- Livia Balacescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Germany
| | - Tobias E Schrader
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany.
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany
| | - Piotr Zolnierczuk
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) Outstation at Spallation Neutron Source (SNS), Oak Ridge, TN, 37831, USA
| | - Olaf Holderer
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany
| | - Stefano Pasini
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute for Complex Systems (ICS-5), 52425, Jülich, Germany
| | - Andreas M Stadler
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056, Aachen, Germany
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425, Jülich, Germany
| |
Collapse
|
8
|
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. PEGylation within a confined hydrophobic cavity of a protein. Phys Chem Chem Phys 2019; 21:25584-25596. [PMID: 31720639 DOI: 10.1039/c9cp04387j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The conjugation of polyethylene glycol (PEG) to proteins, known as PEGylation, has increasingly been employed to expand the efficacy of therapeutic drugs. Recently, research has emphasized the effect of the conjugation site on protein-polymer interactions. In this study, we performed atomistic molecular dynamics (MD) simulations of lysine 116 PEGylated bovine serum albumin (BSA) to illustrate how conjugation near a hydrophobic pocket affects the conjugate's dynamics and observed altered low mode vibrations in the protein. MD simulations were performed for a total of 1.5 μs for each PEG chain molecular mass from 2 to 20 kDa. Analysis of preferential PEG-BSA interactions showed that polymer behavior was also affected as proximity to the attractive protein surface patches promoted interactions in small (2 kDa) PEG chains, while the confined environment of the conjugation site reduced the expected BSA surface coverage when the polymer molecular mass increased to 10 kDa. This thorough analysis of PEG-BSA interactions and polymer dynamics increases the molecular understanding of site-specific PEGylation and enhances the use of protein-polymer conjugates as therapeutics.
Collapse
Affiliation(s)
- Aravinda Munasinghe
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
9
|
Golub M, Moldenhauer M, Schmitt FJ, Feoktystov A, Mändar H, Maksimov E, Friedrich T, Pieper J. Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein: Part I. Small-Angle Scattering. J Phys Chem B 2019; 123:9525-9535. [DOI: 10.1021/acs.jpcb.9b05071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Artem Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748 Garching, Germany
| | - Hugo Mändar
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene Maksimov
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|