1
|
Cardona-Serra S, Rosaleny LE, Giménez-Santamarina S, Martínez-Gil L, Gaita-Ariño A. Towards peptide-based tunable multistate memristive materials. Phys Chem Chem Phys 2021; 23:1802-1810. [PMID: 33434247 DOI: 10.1039/d0cp05236a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of new memristive hardware is a technological requirement towards widespread neuromorphic computing. Molecular spintronics seems to be a fertile field for the design and preparation of this hardware. Within molecular spintronics, recent results on metallopeptides demonstrating the interaction between paramagnetic ions and the chirality induced spin selectivity effect hold particular promise for developing fast (ns-μs) operation times. [R. Torres-Cavanillas et al., J. Am. Chem. Soc., 2020, DOI: 10.1021/jacs.0c07531]. Among the challenges in the field, a major highlight is the difficulty in modelling the spin dynamics in these complex systems, but at the same time the use of inexpensive methods has already allowed progress in that direction. Finally, we discuss the unique potential of biomolecules for the design of multistate memristors with a controlled- and indeed, programmable-nanostructure, allowing going beyond anything that is conceivable by employing conventional coordination chemistry.
Collapse
|
2
|
Abstract
In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Institut de Chimie Radicalaire, CNRS 7273, Aix-Marseille University, 13013 Marseille, France;
| | - Dmitry A Fedorov
- Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830, USA;
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA;
| |
Collapse
|
3
|
Torres-Cavanillas R, Escorcia-Ariza G, Brotons-Alcázar I, Sanchis-Gual R, Mondal PC, Rosaleny LE, Giménez-Santamarina S, Sessolo M, Galbiati M, Tatay S, Gaita-Ariño A, Forment-Aliaga A, Cardona-Serra S. Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides. J Am Chem Soc 2020; 142:17572-17580. [DOI: 10.1021/jacs.0c07531] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramón Torres-Cavanillas
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Garin Escorcia-Ariza
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Isaac Brotons-Alcázar
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Roger Sanchis-Gual
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Prakash Chandra Mondal
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Lorena E. Rosaleny
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | | | - Michele Sessolo
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Marta Galbiati
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Sergio Tatay
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Alejandro Gaita-Ariño
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Alicia Forment-Aliaga
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| | - Salvador Cardona-Serra
- ICMol, Universitat de València, C/Catedrático José Beltrán no. 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
4
|
Giménez-Santamarina S, Cardona-Serra S, Clemente-Juan JM, Gaita-Ariño A, Coronado E. Exploiting clock transitions for the chemical design of resilient molecular spin qubits. Chem Sci 2020; 11:10718-10728. [PMID: 34094324 PMCID: PMC8162297 DOI: 10.1039/d0sc01187h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular spin qubits are chemical nanoobjects with promising applications that are so far hampered by the rapid loss of quantum information, a process known as decoherence. A strategy to improve this situation involves employing so-called Clock Transitions (CTs), which arise at anticrossings between spin energy levels. At CTs, the spin states are protected from magnetic noise and present an enhanced quantum coherence. Unfortunately, these optimal points are intrinsically hard to control since their transition energy cannot be tuned by an external magnetic field; moreover, their resilience towards geometric distortions has not yet been analyzed. Here we employ a python-based computational tool for the systematic theoretical analysis and chemical optimization of CTs. We compare three relevant case studies with increasingly complex ground states. First, we start with vanadium(iv)-based spin qubits, where the avoided crossings are controlled by hyperfine interaction and find that these S = 1/2 systems are very promising, in particular in the case of vanadyl complexes in an L-band pulsed EPR setup. Second, we proceed with a study of the effect of symmetry distortions in a holmium polyoxotungstate of formula [Ho(W5O18)2]9- where CTs had already been experimentally demonstrated. Here we determine the relative importance of the different structural distortions that causes the anticrossings. Third, we study the most complicated case, a polyoxopalladate cube [HoPd12(AsPh)8O32]5- which presents an unusually rich ground spin multiplet. This system allows us to find uniquely favorable CTs that could nevertheless be accessible with standard pulsed EPR equipment (X-band or Q-band) after a suitable chemical distortion to break the perfect cubic symmetry. Since anticrossings and CTs constitute a rich source of physical phenomena in very different kinds of quantum systems, the generalization of this study is expected to have impact not only in molecular spin science but also in other related fields such as molecular photophysics and photochemistry.
Collapse
Affiliation(s)
| | - Salvador Cardona-Serra
- ICMol, Universitat de València C/Catedrático José Beltrán no 2 46980 Paterna Valencia Spain
| | - Juan M Clemente-Juan
- ICMol, Universitat de València C/Catedrático José Beltrán no 2 46980 Paterna Valencia Spain
| | - Alejandro Gaita-Ariño
- ICMol, Universitat de València C/Catedrático José Beltrán no 2 46980 Paterna Valencia Spain
| | - Eugenio Coronado
- ICMol, Universitat de València C/Catedrático José Beltrán no 2 46980 Paterna Valencia Spain
| |
Collapse
|
5
|
Ullah A, Cerdá J, Baldoví JJ, Varganov SA, Aragó J, Gaita-Ariño A. In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations. J Phys Chem Lett 2019; 10:7678-7683. [PMID: 31755716 DOI: 10.1021/acs.jpclett.9b02982] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular nanomagnets hold great promise for spintronics and quantum technologies, provided that their spin memory can be preserved above liquid-nitrogen temperatures. In the past few years, the magnetic hysteresis records observed for two related dysprosocenium-type complexes have highlighted the potential of molecular engineering to decouple vibrational excitations from spin states and thereby enhance magnetic memory. Herein, we study the spin-vibrational coupling in [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = pentaisopropylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which currently holds the hysteresis record (80 K), by means of a computationally affordable methodology that combines first-principles electronic structure calculations with a phenomenological ligand field model. Our analysis is in good agreement with the previously reported state-of-the-art ab initio calculations, with the advantage of drastically reducing the computation time. We then apply the proposed methodology to three alternative dysprosocenium-type complexes, extracting physical insights that demonstrate the usefulness of this strategy to efficiently engineer and screen magnetic molecules with the potential of retaining spin information at higher temperatures.
Collapse
Affiliation(s)
- Aman Ullah
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Sergey A Varganov
- Department of Chemistry , University of Nevada, Reno , 1664 North Virginia Street , Reno , Nevada 89557-0216 , United States
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Alejandro Gaita-Ariño
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| |
Collapse
|