1
|
Tero R, Hagiwara Y, Saito S. Domain Localization by Graphene Oxide in Supported Lipid Bilayers. Int J Mol Sci 2023; 24:ijms24097999. [PMID: 37175707 PMCID: PMC10178265 DOI: 10.3390/ijms24097999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The gel-phase domains in a binary supported lipid bilayer (SLB) comprising dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) were localized on graphene oxide (GO) deposited on a SiO2/Si substrate. We investigated the distribution of the gel-phase domains and the liquid crystalline (Lα) phase regions in DOPC+DPPC-SLB on thermally oxidized SiO2/Si substrates with GO flakes to understand the mechanism of the domain localization on GO. Fluorescence microscopy and atomic force microscopy revealed that the gel-phase domains preferably distributed on GO flakes, whereas the fraction of the Lα-phase increased on the bare SiO2 surface which was not covered with the GO flakes. The gel-phase domain was condensed on GO more effectively at the lower cooling rate. We propose that nucleation of the gel-phase domain preferentially occurred on GO, whose surface has amphiphilic property, during the gel-phase domain formation. The domains of the liquid ordered (Lo) phase were also condensed on GO in a ternary bilayer containing cholesterol that was phase-separated to the Lo phase and the liquid disordered phase. Rigid domains segregates on GO during their formation process, leaving fluid components to the surrounding region of GO.
Collapse
Affiliation(s)
- Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Yoshi Hagiwara
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Shun Saito
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
2
|
Park HH, Wang B, Moon S, Jepson T, Xu K. Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution mapping. Commun Biol 2023; 6:336. [PMID: 36977778 PMCID: PMC10050076 DOI: 10.1038/s42003-023-04729-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
While critical to biological processes, molecular diffusion is difficult to quantify, and spatial mapping of local diffusivity is even more challenging. Here we report a machine-learning-enabled approach, pixels-to-diffusivity (Pix2D), to directly extract the diffusion coefficient D from single-molecule images, and consequently enable super-resolved D spatial mapping. Working with single-molecule images recorded at a fixed framerate under typical single-molecule localization microscopy (SMLM) conditions, Pix2D exploits the often undesired yet evident motion blur, i.e., the convolution of single-molecule motion trajectory during the frame recording time with the diffraction-limited point spread function (PSF) of the microscope. Whereas the stochastic nature of diffusion imprints diverse diffusion trajectories to different molecules diffusing at the same given D, we construct a convolutional neural network (CNN) model that takes a stack of single-molecule images as the input and evaluates a D-value as the output. We thus validate robust D evaluation and spatial mapping with simulated data, and with experimental data successfully characterize D differences for supported lipid bilayers of different compositions and resolve gel and fluidic phases at the nanoscale.
Collapse
Affiliation(s)
- Ha H Park
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Bowen Wang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Suhong Moon
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Tyler Jepson
- QB3-Berkeley, University of California, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- QB3-Berkeley, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Sut TN, Park H, Koo DJ, Yoon BK, Jackman JA. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. SENSORS 2022; 22:s22145185. [PMID: 35890865 PMCID: PMC9316181 DOI: 10.3390/s22145185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Hyeonjin Park
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
- Correspondence: (B.K.Y.); (J.A.J.)
| |
Collapse
|
4
|
Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
Collapse
|
5
|
Non-raft submicron domain formation in cholesterol-containing lipid bilayers induced by polyunsaturated phosphatidylethanolamine. Colloids Surf B Biointerfaces 2021; 210:112235. [PMID: 34891064 DOI: 10.1016/j.colsurfb.2021.112235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Domain formation in "HLC" ternary lipid bilayers, comprising a high transition temperature (High-Tm) lipid, a Low-Tm lipid, and cholesterol (Chol), has been extensively studied as raft-resembling systems. Recently, we reported the formation of submicron domains in an "LLC" lipid bilayer, encompassing Low-Tm phosphatidylethanolamine (PE), Low-Tm phosphatidylcholine (PC), and Chol. We hypothesized that the formation of this unique domain is driven by polyunsaturated PE. In this study, we explored the effects of the degree of PE unsaturation and the double bond distribution at the sn-position on the mechanism of formation and the composition of submicron domains. Supported lipid bilayers (SLBs), comprising PE with various degrees of unsaturation, monounsaturated PC (POPC), and Chol, were investigated using fluorescence microscopy, atomic force microscopy, and the force-distance curve measurement. The area fraction of submicron domains in PE+POPC+Chol-SLB increased with the PE concentration and degree of unsaturation of the PE acyl chain. The results indicated that the submicron domains were enriched with polyunsaturated PE and were in the liquid-disordered-like state, whereas their surrounding regions were in the liquid-ordered-like state. Segregation of polyunsaturated PE from the Chol-containing region generated submicron domains in the LLC lipid bilayer. We propose a mechanism for the formation of these submicron domains based on molecular interactions involving the hydrophobic and hydrophilic parts of the bilayer membrane.
Collapse
|
6
|
Goh MWS, Tero R. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183626. [PMID: 33901442 DOI: 10.1016/j.bbamem.2021.183626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Recently, we reported that a ternary lipid bilayer comprising phosphatidylethanolamine (PE), phosphatidylcholine (PC), which were both derived from chicken egg, and cholesterol (Chol) generates microdomains that function as specific fusion sites for proteoliposomes. Chol-induced microdomain formation in a completely miscible lipid bilayer is an exceptional phenomenon. Numerous studies have elucidated the formation of domains in liquid ordered (Lo) and liquid disordered (Ld) phases of ternary bilayers, which comprise two partially miscible lipids and Chol. Herein, we investigated the composition and mechanism of formation of these unique microdomains in supported lipid bilayers (SLBs) using a fluorescence microscope and an atomic force microscope (AFM). We prepared ternary SLBs using egg-derived PC (eggPC), Chol and three different types of PE: egg-derived PE, 1-palmitoyl-2-oleoyl-PE, and 1,2-didocosahexaenoyl-PE (diDHPE). Fluorescence microscopy observations revealed that fluid and continuous SLBs were formed at PE concentrations (CPE) of ≥6 mol%. Fluorescence recovery after photobleaching measurement revealed that the microdomain was more fluid than the surrounding region that showed typical diffusion coefficient of the Lo phase. The microdomains were observed as depressions in the AFM topographies. Their area fraction (θ) increased with CPE, and diDHPE produced a significantly large θ among the three PEs. The microdomains in the PE+eggPC+Chol-SLBs were rich in polyunsaturated PE and were in the Ld-like phase. Associating eggPC and Chol caused polyunsaturated PE to segregate, resulting in a microdomain formation by conferring the umbrella effect on Chol, entropic effect of disordered acyl chains, and π-π interactions in the hydrophobic core.
Collapse
Affiliation(s)
- Melvin Wei Shern Goh
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
7
|
Zhang Y, Li Q, Dong M, Han X. Effect of cholesterol on the fluidity of supported lipid bilayers. Colloids Surf B Biointerfaces 2020; 196:111353. [DOI: 10.1016/j.colsurfb.2020.111353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
|
8
|
Cisternas MA, Palacios-Coddou F, Molina S, Retamal MJ, Gomez-Vierling N, Moraga N, Zelada H, Soto-Arriaza MA, Corrales TP, Volkmann UG. Dry Two-Step Self-Assembly of Stable Supported Lipid Bilayers on Silicon Substrates. Int J Mol Sci 2020; 21:E6819. [PMID: 32957654 PMCID: PMC7555443 DOI: 10.3390/ijms21186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.
Collapse
Affiliation(s)
- Marcelo A. Cisternas
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Francisca Palacios-Coddou
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Sebastian Molina
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Maria Jose Retamal
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
- Departamento de Química-Física, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Nancy Gomez-Vierling
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Nicolas Moraga
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Hugo Zelada
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| | - Marco A. Soto-Arriaza
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
- Departamento de Química-Física, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| | - Tomas P. Corrales
- Departamento de Fisica, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Ulrich G. Volkmann
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.A.C.); (F.P.-C.); (S.M.); (N.G.-V.); (N.M.); (H.Z.)
- Centro de Investigacion en Nanotecnologia y Materiales Avanzados (CIEN-UC), Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile; (M.J.R.); (M.A.S.-A.)
| |
Collapse
|
9
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Bakás LS, Muñoz-Garay C, Maté SM. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183467. [PMID: 32871116 DOI: 10.1016/j.bbamem.2020.183467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-β-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Laura S Bakás
- Centro de Investigación en Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
10
|
Jackman JA, Cho NJ. Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1387-1400. [PMID: 31990559 DOI: 10.1021/acs.langmuir.9b03706] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Supported lipid bilayers (SLBs) are cell-membrane-mimicking platforms that can be formed on solid surfaces and integrated with a wide range of surface-sensitive measurement techniques. SLBs are useful for unravelling details of fundamental membrane biology and biophysics as well as for various medical, biotechnology, and environmental science applications. Thus, there is high interest in developing simple and robust methods to fabricate SLBs. Currently, vesicle fusion is a popular method to form SLBs and involves the adsorption and spontaneous rupture of lipid vesicles on a solid surface. However, successful vesicle fusion depends on high-quality vesicle preparation, and it typically works with a narrow range of material supports and lipid compositions. In this Feature Article, we summarize current progress in developing two new SLB fabrication techniques termed the solvent-assisted lipid bilayer (SALB) and bicelle methods, which have compelling advantages such as simple sample preparation and compatibility with a wide range of material supports and lipid compositions. The molecular self-assembly principles underpinning the two strategies and important experimental parameters are critically discussed, and recent application examples are presented. Looking forward, we envision that these emerging SLB fabrication strategies can be widely adopted by specialists and nonspecialists alike, paving the way to enriching our understanding of lipid membrane properties and realizing new application possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|