1
|
Choi J, Hwang DS, Lim C, Lee DW. Interaction mechanism between low molecular weight chitosan nanofilm and functionalized surfaces in aqueous solutions. Carbohydr Polym 2024; 324:121504. [PMID: 37985092 DOI: 10.1016/j.carbpol.2023.121504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Low-molecular-weight chitosan (LMW chitosan, <10 kDa) have a significant potential for biomedical applications (e.g., antimicrobial and gene/drug delivery) because of their higher water solubility at pH values ranging from 3.0 to 8.5, compared to that of the high-molecular-weight (>100 kDa) chitosan. A comprehensive understanding of the LMW interaction mechanism with specific functional groups is necessary to predict their binding efficiency to other molecules for effectively utilizing their potential within biological systems. In this study, we used a surface forces apparatus (SFA) to investigate molecular interactions between LMW chitosan and four different functionalized self-assembled monolayers (SAMs) in aqueous solutions at pH values of 3.0, 6.5, and 8.5. Chitosan exhibited the strongest interaction energy with methyl-terminated SAM (CH3-SAM), indicating the significance of hydrophobic interaction. Many chitin/chitosan fibers in nature bind polyphenols (e.g., eumelanin) to form robust composites, which can be attributed to the strong attraction between chitosan and phenyl-SAM, presumably caused by cation-π interactions. These findings demonstrate the potential of modulating the magnitude of the interaction energy by controlling the solution pH and types of targeted functional groups to realize the optimal design of chitosan-based hybrid composites with other biomolecules or synthetic materials.
Collapse
Affiliation(s)
- Jieun Choi
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; R&D Center, ANPOLY INC., Pohang, Gyeongsangbuk-do 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, South Korea
| | - Chanoong Lim
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Toader GA, Nitu FR, Ionita M. Graphene Oxide/Nitrocellulose Non-Covalent Hybrid as Solid Phase for Oligo-DNA Extraction from Complex Medium. Molecules 2023; 28:4599. [PMID: 37375154 DOI: 10.3390/molecules28124599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A nitrocellulose-graphene oxide hybrid that consists of a commercially nitrocellulose (NC) membrane non-covalently modified with graphene oxide (GO) microparticles was successfully prepared for oligonucleotide extraction. The modification of NC membrane was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), which highlighted the principal absorption bands of both the NC membrane at 1641, 1276, and 835 cm-1 (NO2) and of GO in the range of 3450 cm-1 (CH2-OH). The SEM analysis underlined the well-dispersed and uniform coverage of NC membrane with GO, which displayed thin spider web morphology. The wettability assay indicated that the NC-GO hybrid membrane exhibited slightly lower hydrophilic behavior, with a water contact angle of 26.7°, compared to the 15° contact angle of the NC control membrane. The NC-GO hybrid membranes were used to separate oligonucleotides that had fewer than 50 nucleotides (nt) from complex solutions. The features of the NC-GO hybrid membranes were tested for extraction periods of 30, 45, and 60 min in three different complex solutions, i.e., an aqueous medium, an α-Minimum Essential Medium (αMEM), and an αMEM supplemented with fetal bovine serum (FBS). The oligonucleotides were desorbed from the surface of the NC-GO hybrid membrane using Tris-HCl buffer with a pH of 8.0. Out of the three media utilized, the best results were achieved after 60 min incubation of the NC-GO membranes in αMEM, as evidenced by the highest fluorescence emission of 294 relative fluorescence units (r.f.u.). This value corresponded to the extraction of approximately 330-370 pg (≈7%) of the total oligo-DNA. This method is an efficient and effortless way to purify short oligonucleotides from complex solutions.
Collapse
Affiliation(s)
- Georgian A Toader
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Florentin R Nitu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Genetic Lab, Str. Milcov, nr. 5, Sector 1, 012273 Bucuresti, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| |
Collapse
|
3
|
Coffi Dit Gleize K, Tran CTH, Waterhouse A, Bilek MMM, Wickham SFJ. Plasma Activation of Microplates Optimized for One-Step Reagent-Free Immobilization of DNA and Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:343-356. [PMID: 36550613 DOI: 10.1021/acs.langmuir.2c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Activated microplates are widely used in biological assays and cell culture to immobilize biomolecules, either through passive physical adsorption or covalent cross-linking. Covalent attachment gives greater stability in complex biological mixtures. However, current multistep chemical activation methods add complexity and cost, require specific functional groups, and can introduce cytotoxic chemicals that affect downstream cellular applications. Here, we show a method for one-step linker-free activation of microplates by energetic ions from plasma for covalent immobilization of DNA and protein. Two types of energetic ion plasma treatment were shown to be effective: plasma immersion ion implantation (PIII) and plasma-activated coating (PAC). This is the first time that PIII and PAC have been reported in microwell plates with nonflat geometry. We confirm that the plasma treatment generates radical-activated surfaces at the bottom of wells despite potential shadowing from the walls. Comprehensive surface characterization studies were used to compare the PIII and PAC microplate surface composition, wettability, radical density, optical properties, stability, and biomolecule immobilization density. PAC plates were found to have more nitrogen and lower radical density and were more hydrophobic and more stable over 3 months than PIII plates. Optimal conditions were obtained for high-density DNA (PAC, 0 or 21% nitrogen, pH 3-4) and streptavidin (PAC, 21% nitrogen, pH 5-7) binding while retaining optical properties required for typical high-throughput biochemical microplate assays, such as low autofluorescence and high transparency. DNA hybridization and protein activity of immobilized molecules were confirmed. We show that PAC activation allows for high-density covalent immobilization of functional DNA and protein in a single step on both 96- and 384-well plates without specific linker chemistry. These microplates could be used in the future to bind other user-selected ligands in a wide range of applications, for example, for solid phase polymerase chain reaction and stem cell culture and differentiation.
Collapse
Affiliation(s)
| | - Clara T H Tran
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- The Heart Research Institute, The University of Sydney, Newtown 2042, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcela M M Bilek
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelley F J Wickham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
5
|
Dutta S, Gagliardi M, Bellucci L, Agostini M, Corni S, Cecchini M, Brancolini G. Tuning gold-based surface functionalization for streptavidin detection: A combined simulative and experimental study. Front Mol Biosci 2022; 9:1006525. [DOI: 10.3389/fmolb.2022.1006525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
A rationally designed gold-functionalized surface capable of capturing a target protein is presented using the biotin–streptavidin pair as a proof-of-concept. We carried out multiscale simulations to shed light on the binding mechanism of streptavidin on four differently biotinylated surfaces. Brownian Dynamics simulations were used to reveal the preferred initial orientation of streptavidin over the surfaces, whereas classical molecular dynamics was used to refine the binding poses and to investigate the fundamental forces involved in binding, and the binding kinetics. We assessed the binding events and the stability of the streptavidin attachment through a quartz crystal microbalance with dissipation monitoring (QCM-D). The sensing element comprises of biotinylated polyethylene glycol chains grafted on the sensor’s gold surface via thiol-Au chemistry. Finally, we compared the results from experiments and simulations. We found that the confined biotin moieties can specifically capture streptavidin from the liquid phase and provide guidelines on how to exploit the microscopic parameters obtained from simulations to guide the design of further biosensors with enhanced sensitivity.
Collapse
|
6
|
Cholko T, Kaushik S, Wu KY, Montes R, Chang CEA. GeomBD3: Brownian Dynamics Simulation Software for Biological and Engineered Systems. J Chem Inf Model 2022; 62:2257-2263. [PMID: 35549473 DOI: 10.1021/acs.jcim.1c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GeomBD3 is a robust Brownian dynamics simulation package designed to easily handle natural or engineered systems in diverse environments and arrangements. The software package described herein allows users to design, execute, and analyze BD simulations. The simulations use all-atom, rigid molecular models that diffuse according to overdamped Langevin dynamics and interact through electrostatic, Lennard-Jones, and ligand desolvation potentials. The program automatically calculates molecular association rates, surface residence times, and association statistics for any number of user-defined association criteria. Users can also extract molecular association pathways, diffusion coefficients, intermolecular interaction energies, intermolecular contact probability maps, and more using the provided supplementary analysis scripts. We detail the use of the package from start to finish and apply it to a protein-ligand system and a large nucleic acid biosensor. GeomBD3 provides a versatile tool for researchers from various disciplines that can aid in rational design of engineered systems or play an explanatory role as a complement to experiments. GeomBD version 3 is available on our website at http://chemcha-gpu0.ucr.edu/geombd3/ and KBbox at https://kbbox.h-its.org/toolbox/methods/molecular-simulation/geombd/.
Collapse
Affiliation(s)
- Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shivansh Kaushik
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kingsley Y Wu
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Ruben Montes
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Tavakoli-Koopaei R, Javadi-Zarnaghi F, Mirhendi H. Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 357:131409. [PMID: 35035095 PMCID: PMC8750742 DOI: 10.1016/j.snb.2022.131409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Primer exchange reaction (PER) is an emergent method for non-templated synthesis of single stranded DNA molecules. PER has been shown to be effective in cell imaging systems and for detection of macromolecules. A particular application of PER is to detect a specific target nucleic acid. To this endeavor, two coupled DNA hairpins, a detector and an amplifier, play in accordance to extend a target nucleic acid with a concatemer DNA sequence. Here we introduced unified-amplifier based primer exchange reaction (UniAmPER) that beneficially extends the target by a unified-amplifier. The unified-amplifier operates as both detector and amplifier hairpins. The extension resulted in synthesis of concatemer G-rich sequences. The G-rich sequences were expected to form G-quadruplex (GQ) structures. Presence of the GQ structures were investigated by peroxidase activity of GQs in presence of hemin, H2°2 and 3,3',5,5'-Tetramethylbenzidine (TMB) as well as by fluorescence signal generation upon intercalation of thioflavin T (ThT). The presented unified-amplifier in this study facilitates application of PER systems for development of colorimetric or fluorogenic biosensors. As a proof of principle, the method has been applied for detection of reversely transcribed cDNAs from clinical SARS-CoV-2 samples.
Collapse
Affiliation(s)
- Reyhaneh Tavakoli-Koopaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Javadi-Zarnaghi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Facilities Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Dutta S, Corni S, Brancolini G. Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. Int J Mol Sci 2022; 23:1484. [PMID: 35163407 PMCID: PMC8835741 DOI: 10.3390/ijms23031484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoscale biosensors, a highly promising technique in clinical analysis, can provide sensitive yet label-free detection of biomolecules. The spatial and chemical specificity of the surface coverage, the proper immobilization of the bioreceptor as well as the underlying interfacial phenomena are crucial elements for optimizing the performance of a biosensor. Due to experimental limitations at the microscopic level, integrated cross-disciplinary approaches that combine in silico design with experimental measurements have the potential to present a powerful new paradigm that tackles the issue of developing novel biosensors. In some cases, computational studies can be seen as alternative approaches to assess the microscopic working mechanisms of biosensors. Nonetheless, the complex architecture of a biosensor, associated with the collective contribution from "substrate-receptor-analyte" conjugate in a solvent, often requires extensive atomistic simulations and systems of prohibitive size which need to be addressed. In silico studies of functionalized surfaces also require ad hoc force field parameterization, as existing force fields for biomolecules are usually unable to correctly describe the biomolecule/surface interface. Thus, the computational studies in this field are limited to date. In this review, we aim to introduce fundamental principles that govern the absorption of biomolecules onto functionalized nanomaterials and to report state-of-the-art computational strategies to rationally design nanoscale biosensors. A detailed account of available in silico strategies used to drive and/or optimize the synthesis of functionalized nanomaterials for biosensing will be presented. The insights will not only stimulate the field to rationally design functionalized nanomaterials with improved biosensing performance but also foster research on the required functionalization to improve biomolecule-surface complex formation as a whole.
Collapse
Affiliation(s)
- Sutapa Dutta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
9
|
Li Q, Bencherif SA, Su M. Edge-Enhanced Microwell Immunoassay for Highly Sensitive Protein Detection. Anal Chem 2021; 93:10292-10300. [PMID: 34251806 DOI: 10.1021/acs.analchem.1c01754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly sensitive biosensors that can detect low concentrations of protein biomarkers at the early stages of diseases or proteins secreted from single cells are of importance for disease diagnosis and treatment assessment. This work reports a new signal amplification mechanism, that is, edge enhancement based on the vertical sidewalls of microwells for ultra-sensitive protein detection. The fluorescence emission at the edge of the microwells is highly amplified due to the microscopic axial resolution (depth of field) and demonstrates a microring effect. The enhanced fluorescence intensity from microrings is calibrated for bovine serum albumin detection, which shows a 6-fold sensitivity enhancement and a lower limit of detection at the microwell edge, compared to those obtained on a flat surface. The microwell chip is used to separate single cells, and the wall of each microwell is used to detect interferon-γ secretion from T cells stimulated with a peptide and whole cancer cells. Given its edge-enhancement ability, the microwell technique can be a highly sensitive biosensing platform for disease diagnosis at an early stage and for assessing potential treatments at the single-cell level.
Collapse
Affiliation(s)
- Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Kaushik S, Chang CEA. Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association. Front Mol Biosci 2021; 8:659687. [PMID: 34041265 PMCID: PMC8142692 DOI: 10.3389/fmolb.2021.659687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Ligand–protein association is the first and critical step for many biological and chemical processes. This study investigated the molecular association processes under different environments. In biology, cells have different compartments where ligand–protein binding may occur on a membrane. In experiments involving ligand–protein binding, such as the surface plasmon resonance and continuous flow biosynthesis, a substrate flow and surface are required in experimental settings. As compared with a simple binding condition, which includes only the ligand, protein, and solvent, the association rate and processes may be affected by additional ligand transporting forces and other intermolecular interactions between the ligand and environmental objects. We evaluated these environmental factors by using a ligand xk263 binding to HIV protease (HIVp) with atomistic details. Using Brownian dynamics simulations, we modeled xk263 and HIVp association time and probability when a system has xk263 diffusion flux and a non-polar self-assembled monolayer surface. We also examined different protein orientations and accessible surfaces for xk263. To allow xk263 to access to the dimer interface of immobilized HIVp, we simulated the system by placing the protein 20Å above the surface because immobilizing HIVp on a surface prevented xk263 from contacting with the interface. The non-specific interactions increased the binding probability while the association time remained unchanged. When the xk263 diffusion flux increased, the effective xk263 concentration around HIVp, xk263–HIVp association time and binding probability decreased non-linearly regardless of interacting with the self-assembled monolayer surface or not. The work sheds light on the effects of the solvent flow and surface environment on ligand–protein associations and provides a perspective on experimental design.
Collapse
Affiliation(s)
- Shivansh Kaushik
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| | - Chia-En A Chang
- Department of Chemistry, University of Chemistry, Riverside, CA, United States
| |
Collapse
|
11
|
Dutta S, Bellucci L, Agostini M, Gagliardi M, Corni S, Cecchini M, Brancolini G. Atomistic simulations of gold surface functionalization for nanoscale biosensors applications. NANOTECHNOLOGY 2021; 32:095702. [PMID: 33137790 DOI: 10.1088/1361-6528/abc6dc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide class of biosensors can be built via functionalization of gold surface with proper bio conjugation element capable of interacting with the analyte in solution, and the detection can be performed either optically, mechanically or electrically. Any change in physico-chemical environment or any slight variation in mass localization near the surface of the sensor can cause differences in nature of the transduction mechanism. The optimization of such sensors may require multiple experiments to determine suitable experimental conditions for the immobilization and detection of the analyte. Here, we employ molecular modeling techniques to assist the optimization of a gold-surface biosensor. The gold surface of a quartz-crystal-microbalance sensor is functionalized using polymeric chains of poly(ethylene glycol) (PEG) of 2 KDa molecular weight, which is an inert long chain amphiphilic molecule, supporting biotin molecules (bPEG) as the ligand molecules for streptavidin analyte. The PEG linkers are immobilized onto the gold surface through sulphur chemistry. Four gold surfaces with different PEG linker density and different biotinylation ratio between bPEG and PEG, are investigated by means of state-of-the art atomistic simulations and compared with available experimental data. Results suggest that the amount of biotin molecules accessible for the binding with the protein increases upon increasing the linkers density. At the high density a 1:1 ratio of bPEG/PEG can further improve the accessibility of the biotin ligand due to a strong repulsion between linker chains and different degree of hydrophobicity between bPEG and PEG linkers. The study provides a computaional protocol to model sensors at the level of single molecular interactions, and for optimizing the physical properties of surface conjugated ligand which is crucial to enhance output of the sensor.
Collapse
Affiliation(s)
- Sutapa Dutta
- Dipartimento di Scienze Chimiche, Università di Padova, I-35131 Padova, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| | - Luca Bellucci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Matteo Agostini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Mariacristina Gagliardi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, I-35131 Padova, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| |
Collapse
|
12
|
Cholko T, Chang CEA. Modeling Effects of Surface Properties and Probe Density for Nanoscale Biosensor Design: A Case Study of DNA Hybridization near Surfaces. J Phys Chem B 2021; 125:1746-1754. [PMID: 33591751 DOI: 10.1021/acs.jpcb.0c09723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electrochemical biosensors have extremely robust applications while offering ease of preparation, miniaturization, and tunability. By adjusting the arrangement and properties of immobilized probes on the sensor surface to optimize target-probe association, one can design highly sensitive and efficient sensors. In electrochemical nucleic acid biosensors, a self-assembled monolayer (SAM) is widely used as a tunable surface with inserted DNA or RNA probes to detect target sequences. The effects of inhomogeneous probe distribution across surfaces are difficult to study experimentally due to inadequate resolution. Regions of high probe density may inhibit hybridization with targets, and the magnitude of the effect may vary depending on the hybridization mechanism on a given surface. Another fundamental question concerns diffusion and hybridization of DNA taking place on surfaces and whether it speeds up or hinders molecular recognition. We used all-atom Brownian dynamics simulations to help answer these questions by simulating the hybridization process of single-stranded DNA (ssDNA) targets with a ssDNA probe on polar, nonpolar, and anionic SAMs at three different probe surface densities. Moreover, we simulated three tightly packed probe clusters by modeling clusters with different interprobe spacing on two different surfaces. Our results indicate that hybridization efficiency depends strongly on finding a balance that allows attractive forces to steer target DNA toward probes without anchoring it to the surface. Furthermore, we found that the hybridization rate becomes severely hindered when interprobe spacing is less than or equal to the target DNA length, proving the need for a careful design to both enhance target-probe association and avoid steric hindrance. We developed a general kinetic model to predict hybridization times and found that it works accurately for typical probe densities. These findings elucidate basic features of nanoscale biosensors, which can aid in rational design efforts and help explain trends in experimental hybridization rates at different probe densities.
Collapse
Affiliation(s)
- Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, California 92507, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92507, United States
| |
Collapse
|
13
|
Cholko T, Barnum J, Chang CEA. Amyloid-β (Aβ42) Peptide Aggregation Rate and Mechanism on Surfaces with Widely Varied Properties: Insights from Brownian Dynamics Simulations. J Phys Chem B 2020; 124:5549-5558. [PMID: 32525673 DOI: 10.1021/acs.jpcb.0c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) plaques, which form by aggregation of harmless Aβ peptide monomers into larger fibrils, are characteristic of neurodegenerative disorders such as Alzheimer's disease. Efforts to treat Alzheimer's disease focus on stopping or reversing the aggregation process that leads to fibril formation. However, effective treatments are elusive due to certain unknown aspects of the process. Many hypotheses point to disruption of cell membranes by adsorbed Aβ monomers or oligomers, but how Aβ behaves and aggregates on surfaces of widely varying properties, such as those present in a cell, is unclear. Elucidating the effects of various surfaces on the dynamics of Aβ and the kinetics of the aggregation process from bulk solution to a surface-adsorbed multimer can help identify what drives aggregation, leading to new methods of intervention by inhibitory drugs or other means. In this work, we used all-atom Brownian dynamics simulations to study the association of two distinct Aβ42 monomer conformations with a surface-adsorbed or free-floating Aβ42 dimer. We calculated the association time, surface interaction energy, surface diffusion coefficient, surface residence time, and the mechanism of association on four different surfaces and two different bulk solution scenarios. In the presence of a surface, the majority of monomers underwent a two-dimensional surface-mediated association that depended primarily on an Aβ42 electrostatic interaction with the self-assembled monolayer (SAM) surfaces. Moreover, aggregation could be inhibited greatly by surfaces with high affinity for Aβ42 and heterogeneous charge distribution. Our results can be used to identify new opportunities for disrupting or reversing the Aβ42 aggregation process.
Collapse
Affiliation(s)
- Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Joseph Barnum
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|