1
|
Xiao T, Song X. A Gaussian field approach to the solvation of spherical ions in electrolyte solutions. J Chem Phys 2024; 160:034102. [PMID: 38226821 DOI: 10.1063/5.0187141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
In this work, the electrostatic response of an electrolyte solution to a spherical ion is studied with a Gaussian field theory. In order to capture the ionic correlation effect in concentrated solutions, the bulk dielectric response function is described by a two-Yukawa response function. The modified response function of the solution is solved analytically in the spherical geometry, from which the induced charge density and the electrostatic energy are also derived analytically. Comparisons with results for small ions in electrolyte solutions from the hyper-netted chain theory demonstrate the validity of the Gaussian field theory.
Collapse
Affiliation(s)
- Tiejun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang People's Republic of China
| | - Xueyu Song
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Xiao T, Song X. A Gaussian field approach to the planar electric double layer structures in electrolyte solutions. J Chem Phys 2023; 158:2887562. [PMID: 37125713 DOI: 10.1063/5.0138568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
In this work, the planar, electric, double-layer structures of non-polarizable electrodes in electrolyte solutions are studied with Gaussian field theory. A response function with two Yukawa functions is used to capture the electrostatic response of the electrolyte solution, from which the modified response function in the planar symmetry is derived analytically. The modified response function is further used to evaluate the induced charge density and the electrostatic potential near an electrode. The Gaussian field theory, combined with a two-Yukawa response function, can reproduce the oscillatory decay behavior of the electric potentials in concentrated electrolyte solutions. When the exact sum rules for the bulk electrolyte solutions and the electric double layers are used as constraints to determine the parameters of the response function, the Gaussian field theory could at least partly capture the nonlinear response effect of the surface charge density. Comparison with results for a planar electrode with fixed surface charge densities from molecular simulations demonstrates the validity of Gaussian field theory.
Collapse
Affiliation(s)
- Tiejun Xiao
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang 550018, People's Republic of China
| | - Xueyu Song
- Ames Laboratory and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Pan C. A formula and numerical study on Ewald 1D summation. J Comput Chem 2023; 44:902-911. [PMID: 36479716 DOI: 10.1002/jcc.27051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
Ewald summation is famous for its successful applications in molecular simulations for systems under 2 dimensional periodic boundary condition (2D PBC, e.g., planar interfaces) and systems under 3D PBC (e.g., bulk). However, the extension to systems under 1D PBC (like porous structures and tubes) is largely hindered by the special functions in the formula. In this work, a simple approximation of Ewald 1D sum is introduced with its error rigorously controlled. To investigate the impacts on the efficiency and accuracy by different parts, a pairwise potential is calculated for a series of screening parameters ( α ) and radial distances ( ρ ) between two point charges. A mapping between the sum of trigonometric functions in Ewald 1D method and the sum of specific vectors further reveals the different converging speeds of different Fourier parts. When choosing α = 0.2 Å-1 , it is appropriate to ignore the insignificant parts in the sum to accelerate the method.
Collapse
Affiliation(s)
- Cong Pan
- College of Data Science, Jiaxing University, Jiaxing, China
| |
Collapse
|
4
|
Cox SJ. A theory for the stabilization of polar crystal surfaces by a liquid environment. J Chem Phys 2022; 157:094701. [PMID: 36075740 DOI: 10.1063/5.0097531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polar crystal surfaces play an important role in the functionality of many materials and have been studied extensively over many decades. In this article, a theoretical framework is presented that extends existing theories by placing the surrounding solution environment on an equal footing with the crystal itself; this is advantageous, e.g., when considering processes such as crystal growth from solution. By considering the polar crystal as a stack of parallel plate capacitors immersed in a solution environment, the equilibrium adsorbed surface charge density is derived by minimizing the free energy of the system. In analogy to the well-known diverging surface energy of a polar crystal surface at zero temperature, for a crystal in solution it is shown that the "polar catastrophe" manifests as a diverging free energy cost to perturb the system from equilibrium. Going further than existing theories, the present formulation predicts that fluctuations in the adsorbed surface charge density become increasingly suppressed with increasing crystal thickness. We also show how, in the slab geometry often employed in both theoretical and computational studies of interfaces, an electric displacement field emerges as an electrostatic boundary condition, the origins of which are rooted in the slab geometry itself, rather than the use of periodic boundary conditions. This aspect of the work provides a firmer theoretical basis for the recent observation that standard "slab corrections" fail to correctly describe, even qualitatively, polar crystal surfaces in solution.
Collapse
Affiliation(s)
- Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Hu Z. The symmetry-preserving mean field condition for electrostatic correlations in bulk. J Chem Phys 2022; 156:034111. [DOI: 10.1063/5.0078007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zhonghan Hu
- Qingdao Institute for Theoretical and Computational Sciences (QiTCS), Shandong University, Qingdao 266237, People’s Republic of China and Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People’s Republic of China
| |
Collapse
|
6
|
Liang J, Tan P, Zhao Y, Li L, Jin S, Hong L, Xu Z. Superscalability of the random batch Ewald method. J Chem Phys 2022; 156:014114. [PMID: 34998342 DOI: 10.1063/5.0073424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coulomb interaction, following an inverse-square force-law, quantifies the amount of force between two stationary and electrically charged particles. The long-range nature of Coulomb interactions poses a major challenge to molecular dynamics simulations, which are major tools for problems at the nano-/micro-scale. Various algorithms are developed to calculate the pairwise Coulomb interactions to a linear scale, but poor scalability limits the size of simulated systems. Here, we use an efficient molecular dynamics algorithm with the random batch Ewald method on all-atom systems where the complete Fourier components in the Coulomb interaction are replaced by randomly selected mini-batches. By simulating the N-body systems up to 108 particles using 10 000 central processing unit cores, we show that this algorithm furnishes O(N) complexity, almost perfect scalability, and an order of magnitude faster computational speed when compared to the existing state-of-the-art algorithms. Further examinations of our algorithm on distinct systems, including pure water, a micro-phase separated electrolyte, and a protein solution, demonstrate that the spatiotemporal information on all time and length scales investigated and thermodynamic quantities derived from our algorithm are in perfect agreement with those obtained from the existing algorithms. Therefore, our algorithm provides a promising solution on scalability of computing the Coulomb interaction. It is particularly useful and cost-effective to simulate ultra-large systems, which is either impossible or very costly to conduct using existing algorithms, and thus will be beneficial to a broad range of problems at nano-/micro-scales.
Collapse
Affiliation(s)
- Jiuyang Liang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yue Zhao
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Jin
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhenli Xu
- School of Mathematical Sciences, Institute of Natural Sciences and MoE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Sayer T, Cox SJ. Macroscopic surface charges from microscopic simulations. J Chem Phys 2020; 153:164709. [PMID: 33138409 DOI: 10.1063/5.0022596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attaining accurate average structural properties in a molecular simulation should be considered a prerequisite if one aims to elicit meaningful insights into a system's behavior. For charged surfaces in contact with an electrolyte solution, an obvious example is the density profile of ions along the direction normal to the surface. Here, we demonstrate that, in the slab geometry typically used in simulations, imposing an electric displacement field D determines the integrated surface charge density of adsorbed ions at charged interfaces. This allows us to obtain macroscopic surface charge densities irrespective of the slab thickness used in our simulations. We also show that the commonly used Yeh-Berkowitz method and the "mirrored slab" geometry both impose vanishing integrated surface charge densities. We present results both for relatively simple rocksalt (1 1 1) interfaces and the more complex case of kaolinite's basal faces in contact with an aqueous electrolyte solution.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stephen J Cox
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Abstract
The dielectric nature of polar liquids underpins much of their ability to act as useful solvents, but its description is complicated by the long-ranged nature of dipolar interactions. This is particularly pronounced under the periodic boundary conditions commonly used in molecular simulations. In this article, the dielectric properties of a water model whose intermolecular electrostatic interactions are entirely short-ranged are investigated. This is done within the framework of local molecular-field theory (LMFT), which provides a well-controlled mean-field treatment of long-ranged electrostatics. This short-ranged model gives a remarkably good performance on a number of counts, and its apparent shortcomings are readily accounted for. These results not only lend support to LMFT as an approach for understanding solvation behavior, but also are relevant to those developing interaction potentials based on local descriptions of liquid structure.
Collapse
|
9
|
Baker EB, Rodgers JM, Weeks JD. Local Molecular Field Theory for Nonequilibrium Systems. J Phys Chem B 2020; 124:5676-5684. [PMID: 32511933 DOI: 10.1021/acs.jpcb.0c03295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We provide a framework for extending equilibrium local molecular field (LMF) theory to a statistical ensemble evolving under a time-dependent applied field. In this context, the self-consistency of the original LMF equation is achieved dynamically, which provides an efficient method for computing the equilibrium LMF potential, in addition to providing the nonequilibrium generalization. As a concrete example, we investigate water confined between hydrophobic or charged walls, systems that are very sensitive to the treatment of long-ranged electrostatics. We then analyze confined water in the presence of a time-dependent applied electric field, generated by a sinusoidal or abrupt variation of the magnitudes of uniform charge densities on each wall. Very accurate results are found from the time-dependent LMF formalism even for strong static fields and for time-dependent systems that are driven far from equilibrium where linear response methods fail.
Collapse
Affiliation(s)
- Edward B Baker
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | | | - John D Weeks
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Abstract
Coulomb interactions play a major role in determining the thermodynamics, structure, and dynamics of condensed-phase systems, but often present significant challenges. Computer simulations usually use periodic boundary conditions to minimize corrections from finite cell boundaries but the long range of the Coulomb interactions generates significant contributions from distant periodic images of the simulation cell, usually calculated by Ewald sum techniques. This can add significant overhead to computer simulations and hampers the development of intuitive local pictures and simple analytic theory. In this paper, we present a general framework based on local molecular field theory to accurately determine the contributions from long-ranged Coulomb interactions to the potential of mean force between ionic or apolar hydrophobic solutes in dilute aqueous solutions described by standard classical point charge water models. The simplest approximation leads to a short solvent (SS) model, with truncated solvent-solvent and solute-solvent Coulomb interactions and long-ranged but screened Coulomb interactions only between charged solutes. The SS model accurately describes the interplay between strong short-ranged solute core interactions, local hydrogen-bond configurations, and long-ranged dielectric screening of distant charges, competing effects that are difficult to capture in standard implicit solvent models.
Collapse
|