1
|
Silva LDS, Colherinhas G, Cardoso WB. Evaluating quantum entanglement generation in two-dimensional graphene systems through lithium ion interactions: A DFT-based study. J Comput Chem 2024; 45:1002-1007. [PMID: 38206886 DOI: 10.1002/jcc.27303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
In this article, we employed concepts from Density Functional Theory to investigate the interaction energy behavior between the fragments of two-dimensional systems composed of graphene-based materials and lithium ions. Specifically, the proposed system consists of two graphene sheets separated by a controlled distance (face-to-face), with a lithium ion positioned at the center of this separation. Additionally, we examined potential electronic transitions within these systems and assessed the feasibility of quantum entanglement generation and manipulation. Our findings revealed that the interaction energies within the analyzed systems exhibited behavior akin to that described by the Lennard-Jones potential, which characterizes systems with favorable energy for their formation. The results further yielded estimates for the constants ϵ and σ , with values of - 66 . 59 kcal/mol and 1.63 Å , respectively. Specific electronic transitions were identified, suggesting the potential for quantum entanglement generation and manipulation among the two-dimensional graphene system mediated by the lithium ion interactions.
Collapse
Affiliation(s)
- Lucas de S Silva
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Wesley B Cardoso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
2
|
de Araujo Chagas H, Fileti EE, Colherinhas G. Comparing supercapacitors with graphene/graphyne electrodes and [Bmim][PF6], [Emim][BF4], [Ch][Gly] and [Pyr][Tfsi] ionic liquids using molecular dynamics. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Messias A, Fileti EE. Assessing the impact of valence asymmetry in ionic solutions and its consequences on the performance of supercapacitors. Phys Chem Chem Phys 2022; 24:20445-20453. [PMID: 35984412 DOI: 10.1039/d2cp00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations were performed to describe the properties of hypothetical salt electrolytic solutions. The main focus of this work is the valence asymmetry, which in recent years has been considered an important aspect in the physical chemistry of aqueous electrolytes. In general, our results show that the structural, energetic, and dynamic properties respond differently to the asymmetry of ionic solutions, but in all cases, appreciable changes were observed. Graphene supercapacitors based on the investigated electrolytes were studied in light of their electrostatic properties. We observed that the electrode capacitances, positive and negative, were greatly influenced by the presence of cations in the electrical double layer of the negative electrode and by the absence of these cations, in the double layer of the positive electrode. In general, we assess that quantitative variations due to valence asymmetry may indeed be an important factor for the development of new and more efficient electrolytes.
Collapse
Affiliation(s)
- Andresa Messias
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil.
| | - Eudes E Fileti
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil. .,Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil
| |
Collapse
|
4
|
de Araujo Chagas H, Fileti EE, Colherinhas G. A molecular dynamics study of graphyne-based electrode and biocompatible ionic liquid for supercapacitor applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Domingos Alves E, de Andrade DX, de Almeida AR, Colherinhas G. Molecular dynamics study of hydrogen bond in peptide membrane at 150–300 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Cardoso WB, Colherinhas G. Fullerene C60 spectroscopy in [BMIM][PF6] ionic liquid: Molecular dynamics study using polarization effects. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Messias A, C da Silva DA, Fileti EE. Salt-in-water and water-in-salt electrolytes: the effects of the asymmetry in cation and anion valence on their properties. Phys Chem Chem Phys 2021; 24:336-346. [PMID: 34889921 DOI: 10.1039/d1cp04259a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the structural, dynamic, energetic, and electrostatic properties of electrolytes based on the ion pairs LiCl and Li2SO4. Atomistic molecular dynamics simulations were used to simulate these aqueous electrolytic solutions at two different concentrations 2 M (normal) and 21 M (superconcentrated, WiSE). The effects of the valence asymmetry of the Li2SO4 electrolyte were also discussed for both salt concentrations. Our results differ in the physical aspect of pure electrolytes, showing the drastic effect of high concentration, in particular on the viscosity, which is dramatically increased in WiSE. This is a consequence of their reduced ionic mobility and has a direct effect on ionic conductivity. Also, our results for graphene-based supercapacitors, as indicated by some experimental work, do not indicate any better performance of WiSEs over normal electrolytes. In fact, the differences in the total capacitance, due to the concentration of ions, presented by both electrolytes are negligible. The valence asymmetry can be clearly observed in some properties but for most of them its effects could not be quantified or isolated.
Collapse
Affiliation(s)
- Andresa Messias
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil.
| | - Débora A C da Silva
- Center for Innovation on New Energies, Advanced Energy Storage Division, Carbon Sci-Tech Labs, University of Campinas, School of Electrical and Computer Engineering, Av. Albert Einstein 400, Campinas - SP, 13083-852, Brazil
| | - Eudes E Fileti
- Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil.
| |
Collapse
|
8
|
Khlyupin A, Aslyamov T. Branching random graph model of rough surfaces describes thermal properties of the effective molecular potential. Phys Rev E 2021; 103:022104. [PMID: 33735969 DOI: 10.1103/physreve.103.022104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
Fluid properties near rough surfaces are crucial in describing fundamental surface phenomena and modern industrial material design implementations. One of the most powerful approaches to model real rough materials is based on the surface representation in terms of random geometry. Understanding the influence of random solid geometry on the low-temperature fluid thermodynamics is a cutting-edge problem. Therefore, this work extends recent studies bypassing high-temperature expansion and small heterogeneity scale. We introduce random branching trees whose topology reflects the hierarchical properties of a random solid geometry. This mathematical representation allows us to obtain averaged free energy using a statistical model of virtual clusters interacting through random ultrametric pairwise potentials. Our results demonstrate that a significant impact to fluid-solid interface energy is induced by the hierarchical structure of random geometry at low temperature. These calculations coincide with direct Monte Carlo simulations. Due to the study's interdisciplinary nature, the developed approach can be applied to a wide range of quenched disorder systems on random graphs.
Collapse
Affiliation(s)
- Aleksey Khlyupin
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow 141700, Russia
| | - Timur Aslyamov
- Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| |
Collapse
|
9
|
Yang YF, Cederbaum LS. Caged-electron states and split-electron states in the endohedral alkali C 60. Phys Chem Chem Phys 2021; 23:11837-11843. [PMID: 33988191 DOI: 10.1039/d1cp01341f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low-lying electronic states of neutral X@C60 (X = Li, Na, K, Rb) have been computed and analyzed by employing state-of-the-art high level many-electron methods. Apart from the common charge-separated states, well known to be present in endohedral fullerenes, one non-charge-separated state has been found in each of the investigated systems. In Li@C60 and Na@C60, the non-charge-separated state is a caged-electron state already discussed before for Li@C60. This indicates that the application of this low-lying state of Li@C60 discussed before is also applicable for Na@C60. In K@C60 and Rb@C60, the electronic radial distribution analysis shows that this hitherto unknown non-charge-separated state possesses a different nature from that of a caged-electron state.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Abstract
With the development of wearable and flexible electronic devices, there is an increasing demand for new types of flexible energy storage power supplies. The flexible supercapacitor has the advantages of fast charging and discharging, high power density, long cycle life, good flexibility, and bendability. Therefore, it exhibits great potential for use in flexible electronics. In flexible supercapacitors, graphene materials are often used as electrode materials due to the advantages of their high specific surface area, high conductivity, good mechanical properties, etc. In this review, the classification of flexible electrodes and some common flexible substrates are firstly summarized. Secondly, we introduced the advantages and disadvantages of five graphene-based materials used in flexible supercapacitors, including graphene quantum dots (GQDs), graphene fibers (GFbs), graphene films (GFs), graphene hydrogels (GHs), and graphene aerogels (GAs). Then, we summarized the latest developments in the application of five graphene-based materials for flexible electrodes. Finally, the defects and outlooks of GQDs, GFbs, GFs, GHs, and GAs used in flexible electrodes are given.
Collapse
|
11
|
Inoue P, Fileti E, Malaspina T. Computational Study of the Properties of Acetonitrile/Water-in-Salt Hybrid Electrolytes as Electrolytes for Supercapacitors. J Phys Chem B 2020; 124:5685-5695. [PMID: 32551632 DOI: 10.1021/acs.jpcb.0c03516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Normal and water-in-salt Li-bis(trifluoromethane) sulfonimide anion-based electrolytes were modeled using atomistic molecular dynamics simulations. Their acetonitrile (ACN) mixtures, in various concentrations, were also studied to evaluate the impact of a cosolvent on the structural, dynamical, and electrical properties of the electrolytes using liquid electrolyte and supercapacitor models. Our simulations for pure and ACN-based electrolytes revealed a drastic difference that exists between normal electrolytes and water-in-salt electrolytes and a systematic reduction of the diffusion of species by approximately a factor of 2 because of the ACN impact. Electrolytic cells for each electrolyte were built with graphene as the electrode. Our results for capacitance reveal an asymmetry between the electrode capacitances, with negative electrode capacitance systematically higher than those of the positive electrode. The total capacitance of the electrode exhibited negligible variations regardless of the concentration and composition of the electrolyte.
Collapse
Affiliation(s)
- Pedro Inoue
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil
| | - Eudes Fileti
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil
| | - Thaciana Malaspina
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil
| |
Collapse
|
12
|
Ali BA, Biby AH, Allam NK. Fullerene C
76
: An Unexplored Superior Electrode Material with Wide Operating Potential Window for High‐Performance Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Basant A. Ali
- Energy Materials Laboratory School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| | - Ahmed H. Biby
- Energy Materials Laboratory School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|