1
|
Sasaki K, Suzuki Y. Cooperative and Local Molecular Motion of High-Density Water in Glycerol Aqueous Solutions. J Phys Chem Lett 2024; 15:11546-11552. [PMID: 39526625 DOI: 10.1021/acs.jpclett.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The glass-to-liquid transition of water, particularly in high-density water (HDW), has long been a controversial topic due to challenges posed by inevitable crystallization. In this study, we addressed this issue by creating homogeneous high-density glass from a dilute glycerol aqueous solution under high pressure. Using dielectric spectroscopy, we explored the glass transition of HDW in glycerol solutions across the full concentration range under high pressures. HDW was found to exhibit two distinct relaxation modes: one linked to cooperative motion and the other to noncooperative local motion. The fragility index classification of HDW, derived from the cooperative motion of water, suggests that HDW behaves as a "fragile" liquid, contradicting previous suggestions. Extrapolation to pure HDW indicates that the dielectric relaxation observed in pure HDW originates from noncooperative local water motion.
Collapse
Affiliation(s)
- Kaito Sasaki
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Micro Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshiharu Suzuki
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
2
|
Bachler J, Daidone I, Zanetti-Polzi L, Loerting T. Tuning the low-temperature phase behavior of aqueous ionic liquids. Phys Chem Chem Phys 2024; 26:9741-9753. [PMID: 38470827 DOI: 10.1039/d3cp06101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Water's anomalous behavior is often explained using a two-liquid model, where two types of water, high-density liquid (HDL) and low-density liquid (LDL), can be separated via a liquid-liquid phase transition (LLPT) at low temperature. Mixtures of water and the ionic liquid hydrazinium trifluoroacetate were suggested to also show an LLPT but with the advantage that there is no rapid ice crystallization hampering its observation. It remains controversial whether these solutions exhibit an LLPT or are instead associated with complex phase separation phenomena. We here show detailed low-temperature calorimetry and diffraction experiments on aqueous solutions containing hydrazinium trifluoroacetate and other similar ionic liquids, all at a solute mole fraction of x = 0.175. Hydrazinium trifluoroacetate, ammonium trifluoroacetate, ethylammonium trifluoroacetate and hydrazinium pentafluoropropionate all boast exothermic transitions unrelated to crystallization as well as remarkable structural changes upon cooling into the glassy state. We propose a model inspired by micelle formation and decomposition in surfactant solutions, which is complemented by MD simulations and allows rationalizing the rich phase behavior of our mixtures during cooling. The fundamental aspect of the model is the hydrophobic nature of fluorinated anions that enables aggregation, which is reversed upon cooling and culminates in the remarkable exothermic first-order transition observed at low temperature. That is, we assign the first-order transition not to an LLPT but to phase-separations similar to the ones when falling below the Krafft temperature. All other solutions merely show simple vitrification behavior. Still, they exhibit distinct differences in liquid fragility, which is decreased continuously with decreasing hydrophobicity of the anions. This might enable the systematic tuning of ionic liquids with the goal of designing aqueous solutions of specific fragility.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila 67010, Italy
| | | | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| |
Collapse
|
3
|
Zhang T, Han Y, Luo CF, Liu X, Zhang X, Song Y, Chen YT, Du S. Ferroelectricity of ice nanotube forests grown in three-dimensional graphene: the electric field effect. NANOSCALE 2024; 16:1188-1196. [PMID: 38113050 DOI: 10.1039/d3nr03762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Generating diverse ferroelectric ice nanotubes (NTs) efficiently has always been challenging, but matters in nanomaterial synthesis and processing technology. In the present work, we propose a method of growing ice NT forests in a single cooling process. A three-dimensional (3D) graphene structure was selected to behave as a representative container in which a batch of (5, 0) ice NTs was formed simultaneously under the cooling process from molecular dynamics simulation. Other similar 3D graphene structures but with different hole configurations, like uniform triangle or both triangle and pentagon, were also tested, revealing that ice NTs with different tube indices, i.e. both (3, 0) and (5, 0), could also be formed at the same time. Intriguingly, the orientations of the dipole moments of the water molecules of an ice NT formed were independent of each other, making the net ferroelectricity of the whole system weakened or even cancelled. An electric field could help change the orientation of the water molecules of the already obtained ice NTs and even twist the tube to be a spiral (5, 1) one if it was applied during the cooling process, such that the net ferroelectricity was greatly improved. The underlying physical mechanism of all phase transition phenomena, including the improvement of the ferroelectricity under an electric field, were explored in depth from the phase transition curves and structural point of view. The obtained results are of significant application value for improving the preparation efficiency of nano-ferroelectric materials, which are prosperous in nano-devices.
Collapse
Affiliation(s)
- Tengfei Zhang
- Qingdao Innovation and Development Center of Harbin Engineering University, 266400 Qingdao, China.
| | - Yang Han
- Qingdao Innovation and Development Center of Harbin Engineering University, 266400 Qingdao, China.
- College of Power and Energy Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Chuan-Fu Luo
- College of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Xiaochuang Liu
- Qingdao Innovation and Development Center of Harbin Engineering University, 266400 Qingdao, China.
| | - Xiaowei Zhang
- Qingdao Innovation and Development Center of Harbin Engineering University, 266400 Qingdao, China.
| | - Yuhan Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, 210096 Nanjing, China
| | - Yi-Tung Chen
- Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154, USA
| | - Shiyu Du
- Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
4
|
Ferrer F, Juramy M, Jabbour R, Cousin S, Ziarelli F, Mollica G, Thureau P, Viel S. Polarization Amplification in Dynamic Nuclear Polarization Magic-Angle Spinning Solid-State Nuclear Magnetic Resonance by Solubilizing Traditional Ionic Salts. J Phys Chem Lett 2023; 14:9619-9623. [PMID: 37870262 DOI: 10.1021/acs.jpclett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Dynamic nuclear polarization can improve the sensitivity of magic-angle spinning solid-state NMR experiments by 1-2 orders of magnitude. In aqueous media, experiments are usually performed using the so-called DNP juice, a glycerol-d8/D2O/H2O mixture (60/30/10, v/v/v) that can form a homogeneous glass at cryogenic temperatures. This acts as a cryoprotectant and prevents phase separation of the paramagnetic polarizing agents (PAs) that are added to the mixture to provide the source of electron spin polarization required for DNP. Here, we show that relatively high 1H DNP enhancements (∼60) can also be obtained in water without glycerol (or other glass forming agents) simply by dissolving high concentrations of electrolytes (such as NaCl or LiCl), which perturb the otherwise unavoidable ice crystallization observed upon cooling, thereby reducing PA phase separation and restoring DNP efficiency.
Collapse
Affiliation(s)
| | - Marie Juramy
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Ribal Jabbour
- Aix-Marseille Univ, CNRS, Centrale Méditerranée, FSCM, 13013 Marseille, France
| | - Samuel Cousin
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Fabio Ziarelli
- Aix-Marseille Univ, CNRS, Centrale Méditerranée, FSCM, 13013 Marseille, France
| | | | | | - Stéphane Viel
- Aix-Marseille Univ, CNRS, ICR, 13013, Marseille, France
| |
Collapse
|
5
|
Sonchaeng U, Wongphan P, Pan-utai W, Paopun Y, Kansandee W, Satmalee P, Tamtin M, Kosawatpat P, Harnkarnsujarit N. Preparation and Characterization of Novel Green Seaweed Films from Ulva rigida. Polymers (Basel) 2023; 15:3342. [PMID: 37631399 PMCID: PMC10460084 DOI: 10.3390/polym15163342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Ulva rigida green seaweed is an abundant biomass consisting of polysaccharides and protein mixtures and a potential bioresource for bioplastic food packaging. This research prepared and characterized novel biodegradable films from Ulva rigida extracts. The water-soluble fraction of Ulva rigida was extracted and prepared into bioplastic films. 1H nuclear magnetic resonance indicated the presence of rhamnose, glucuronic and sulfate polysaccharides, while major amino acid components determined via high-performance liquid chromatography (HPLC) were aspartic acid, glutamic acid, alanine and glycine. Seaweed extracts were formulated with glycerol and triethyl citrate (20% and 30%) and prepared into films. Ulva rigida films showed non-homogeneous microstructures, as determined via scanning electron microscopy, due to immiscible crystalline component mixtures. X-ray diffraction also indicated modified crystalline morphology due to different plasticizers, while infrared spectra suggested interaction between plasticizers and Ulva rigida polymers via hydrogen bonding. The addition of glycerol decreased the glass transition temperature of the films from -36 °C for control films to -62 °C for films with 30% glycerol, indicating better plasticization. Water vapor and oxygen permeability were retained at up to 20% plasticizer content, and further addition of plasticizers increased the water permeability up to 6.5 g·mm/m2·day·KPa, while oxygen permeability decreased below 20 mL·mm/m2·day·atm when blending plasticizers at 30%. Adding glycerol efficiently improved tensile stress and strain by up to 4- and 3-fold, respectively. Glycerol-plasticized Ulva rigida extract films were produced as novel bio-based materials that supported sustainable food packaging.
Collapse
Affiliation(s)
- Uruchaya Sonchaeng
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Yupadee Paopun
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand (W.K.)
| | - Wiratchanee Kansandee
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand (W.K.)
| | - Prajongwate Satmalee
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Montakan Tamtin
- Kung Krabaen Bay Royal Development Study Center, Department of Fisheries, Ministry of Agriculture and Cooperatives, Chantha Buri 22120, Thailand
| | - Prapat Kosawatpat
- Phetchaburi Coastal Aquaculture Research and Development Center, Coastal Aquaculture Research and Development Division, Department of Fisheries, Ministry of Agriculture and Cooperatives, Phetchaburi 76100, Thailand;
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Filianina M, Bin M, Berkowicz S, Reiser M, Li H, Timmermann S, Blankenburg M, Amann-Winkel K, Gutt C, Perakis F. Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions. J Phys Chem B 2023. [PMID: 37399586 DOI: 10.1021/acs.jpcb.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Studying protein interactions at low temperatures has important implications for optimizing cryostorage processes of biological tissue, food, and protein-based drugs. One of the major issues is related to the formation of ice nanocrystals, which can occur even in the presence of cryoprotectants and can lead to protein denaturation. The presence of ice nanocrystals in protein solutions poses several challenges since, contrary to microscopic ice crystals, they can be difficult to resolve and can complicate the interpretation of experimental data. Here, using a combination of small- and wide-angle X-ray scattering (SAXS and WAXS), we investigate the structural evolution of concentrated lysozyme solutions in a cryoprotected glycerol-water mixture from room temperature (T = 300 K) down to cryogenic temperatures (T = 195 K). Upon cooling, we observe a transition near the melting temperature of the solution (T ≈ 245 K), which manifests both in the temperature dependence of the scattering intensity peak position reflecting protein-protein length scales (SAXS) and the interatomic distances within the solvent (WAXS). Upon thermal cycling, a hysteresis is observed in the scattering intensity, which is attributed to the formation of nanocrystallites in the order of 10 nm. The experimental data are well described by the two-Yukawa model, which indicates temperature-dependent changes in the short-range attraction of the protein-protein interaction potential. Our results demonstrate that the nanocrystal growth yields effectively stronger protein-protein attraction and influences the protein pair distribution function beyond the first coordination shell.
Collapse
Affiliation(s)
- Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hailong Li
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sonja Timmermann
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Malte Blankenburg
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christian Gutt
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Tonauer CM, Fidler LR, Giebelmann J, Yamashita K, Loerting T. Nucleation and growth of crystalline ices from amorphous ices. J Chem Phys 2023; 158:141001. [PMID: 37061482 DOI: 10.1063/5.0143343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
We here review mostly experimental and some computational work devoted to nucleation in amorphous ices. In fact, there are only a handful of studies in which nucleation and growth in amorphous ices are investigated as two separate processes. In most studies, crystallization temperatures Tx or crystallization rates RJG are accessed for the combined process. Our Review deals with different amorphous ices, namely, vapor-deposited amorphous solid water (ASW) encountered in many astrophysical environments; hyperquenched glassy water (HGW) produced from μm-droplets of liquid water; and low density amorphous (LDA), high density amorphous (HDA), and very high density amorphous (VHDA) ices produced via pressure-induced amorphization of ice I or from high-pressure polymorphs. We cover the pressure range of up to about 6 GPa and the temperature range of up to 270 K, where only the presence of salts allows for the observation of amorphous ices at such high temperatures. In the case of ASW, its microporosity and very high internal surface to volume ratio are the key factors determining its crystallization kinetics. For HGW, the role of interfaces between individual glassy droplets is crucial but mostly neglected in nucleation or crystallization studies. In the case of LDA, HDA, and VHDA, parallel crystallization kinetics to different ice phases is observed, where the fraction of crystallized ices is controlled by the heating rate. A key aspect here is that in different experiments, amorphous ices of different "purities" are obtained, where "purity" here means the "absence of crystalline nuclei." For this reason, "preseeded amorphous ice" and "nuclei-free amorphous ice" should be distinguished carefully, which has not been done properly in most studies. This makes a direct comparison of results obtained in different laboratories very hard, and even results obtained in the same laboratory are affected by very small changes in the preparation protocol. In terms of mechanism, the results are consistent with amorphous ices turning into an ultraviscous, deeply supercooled liquid prior to nucleation. However, especially in preseeded amorphous ices, crystallization from the preexisting nuclei takes place simultaneously. To separate the time scales of crystallization from the time scale of structure relaxation cleanly, the goal needs to be to produce amorphous ices free from crystalline ice nuclei. Such ices have only been produced in very few studies.
Collapse
Affiliation(s)
- Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lilli-Ruth Fidler
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Giebelmann
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Keishiro Yamashita
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Dhabal D, Molinero V. Kinetics and Mechanisms of Pressure-Induced Ice Amorphization and Polyamorphic Transitions in a Machine-Learned Coarse-Grained Water Model. J Phys Chem B 2023; 127:2847-2862. [PMID: 36920450 DOI: 10.1021/acs.jpcb.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Water glasses have attracted considerable attention due to their potential connection to a liquid-liquid transition in supercooled water. Here we use molecular simulations to investigate the formation and phase behavior of water glasses using the machine-learned bond-order parameter (ML-BOP) water model. We produce glasses through hyperquenching of water, pressure-induced amorphization (PIA) of ice, and pressure-induced polyamorphic transformations. We find that PIA of polycrystalline ice occurs at a lower pressure than that of monocrystalline ice and through a different mechanism. The temperature dependence of the amorphization pressure of polycrystalline ice for ML-BOP agrees with that in experiments. We also find that ML-BOP accurately reproduces the density, coordination number, and structural features of low-density (LDA), high-density (HDA), and very high-density (VHDA) amorphous water glasses. ML-BOP accurately reproduces the experimental radial distribution function of LDA but overpredicts the minimum between the first two shells in high-density glasses. We examine the kinetics and mechanism of the transformation between low-density and high-density glasses and find that the sharp nature of these transitions in ML-BOP is similar to that in experiments and all-atom water models with a liquid-liquid transition. Transitions between ML-BOP glasses occur through a spinodal-like mechanism, similar to ice crystallization from LDA. Both glass-to-glass and glass-to-ice transformations have Avrami-Kolmogorov kinetics with exponent n = 1.5 ± 0.2 in experiments and simulations. Importantly, ML-BOP reproduces the competition between crystallization and HDA→LDA transition above the glass transition temperature Tg, and separation of their time scales below Tg, observed also in experiments. These findings demonstrate the ability of ML-BOP to accurately reproduce water properties across various regimes, making it a promising model for addressing the competition between polyamorphic transitions and crystallization in water and solutions.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
9
|
Cerdeiriña CA. Water's Unusual Thermodynamics in the Realm of Physical Chemistry. J Phys Chem B 2022; 126:6608-6613. [PMID: 36001372 PMCID: PMC9797112 DOI: 10.1021/acs.jpcb.2c05274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Indexed: 12/31/2022]
Abstract
While it is known since the early work by Edsall, Frank and Evans, Kauzmann, and others that the thermodynamics of solvation of nonpolar solutes in water is unusual and has implications for the thermodynamics of protein folding, only recently have its connections with the unusual temperature dependence of the density of solvent water been illuminated. Such density behavior is, in turn, one of the manifestations of a nonstandard thermodynamic pattern contemplating a second, liquid-liquid critical point at conditions of temperature and pressure at which water exists as a deeply supercooled liquid. Recent experimental and computational work unambiguously points toward the existence of such a critical point, thereby providing concrete answers to the questions posed by the 1976 pioneering experiments by Speedy and Angell and the associated "liquid-liquid transition hypothesis" posited in 1992 by Stanley and co-workers. Challenges of this phenomenology to the branch of Statistical Mechanics remain.
Collapse
Affiliation(s)
- Claudio A. Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| |
Collapse
|
10
|
Alba-Simionesco C, Judeinstein P, Longeville S, Osta O, Porcher F, Caupin F, Tarjus G. Interplay of vitrification and ice formation in a cryoprotectant aqueous solution at low temperature. Proc Natl Acad Sci U S A 2022; 119:e2112248119. [PMID: 35302891 PMCID: PMC8944663 DOI: 10.1073/pnas.2112248119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the “marginal” glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid–liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.
Collapse
Affiliation(s)
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Stéphane Longeville
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Oriana Osta
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Florence Porcher
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Frédéric Caupin
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gilles Tarjus
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
11
|
Direct observation of reversible liquid-liquid transition in a trehalose aqueous solution. Proc Natl Acad Sci U S A 2022; 119:2113411119. [PMID: 35074875 PMCID: PMC8812557 DOI: 10.1073/pnas.2113411119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies on liquid water suggest that the two liquid waters exist in the supercooled temperature region and that their existence relates to the anomalous behavior of low-temperature liquid water such as the maximum density at 4 °C. However, the experimental investigation of two liquid waters is difficult because of the rapid crystallization. In this study, a reversible liquid–liquid transition in a trehalose aqueous solution by the change in pressure was observed directly. This result suggests strongly that two liquid waters exist in the aqueous solution. This study has implications for wide fields related to liquid water, such as solution chemistry, cryobiology, meteorology, and food engineering. Water forms two glassy waters, low-density and high-density amorphs, which undergo a reversible polyamorphic transition with the change in pressure. The two glassy waters transform into the different liquids, low-density liquid (LDL) and high-density liquid (HDL), at high temperatures. It is predicted that the two liquid waters also undergo a liquid–liquid transition (LLT). However, the reversible LLT, particularly the LDL-to-HDL transition, has not been observed directly due to rapid crystallization. Here, I prepared a glassy dilute trehalose aqueous solution (0.020 molar fraction) without segregation and measured the isothermal volume change at 0.01 to 1.00 GPa below 160 K. The polyamorphic transition and the glass-to-liquid transition for the high-density and low-density solutions were examined, and the liquid region where both LDL and HDL existed was determined. The results show that the reversible polyamorphic transition induced by the pressure change above 140 K is the LLT. That is, the transition from LDL to HDL is observed. Moreover, the pressure hysteresis of LLT suggests strongly that the LLT has a first-order nature. The direct observation of the reversible LLT in the trehalose aqueous solution has implications for understanding not only the liquid–liquid critical point hypothesis of pure water but also the relation between aqueous solution and water polyamorphism.
Collapse
|
12
|
Waibl F, Kraml J, Fernández-Quintero ML, Loeffler JR, Liedl KR. Explicit solvation thermodynamics in ionic solution: extending grid inhomogeneous solvation theory to solvation free energy of salt-water mixtures. J Comput Aided Mol Des 2022; 36:101-116. [PMID: 35031880 PMCID: PMC8907097 DOI: 10.1007/s10822-021-00429-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022]
Abstract
Hydration thermodynamics play a fundamental role in fields ranging from the pharmaceutical industry to environmental research. Numerous methods exist to predict solvation thermodynamics of compounds ranging from small molecules to large biomolecules. Arguably the most precise methods are those based on molecular dynamics (MD) simulations in explicit solvent. One theory that has seen increased use is inhomogeneous solvation theory (IST). However, while many applications require accurate description of salt-water mixtures, no implementation of IST is currently able to estimate solvation properties involving more than one solvent species. Here, we present an extension to grid inhomogeneous solvation theory (GIST) that can take salt contributions into account. At the example of carbazole in 1 M NaCl solution, we compute the solvation energy as well as first and second order entropies. While the effect of the first order ion entropy is small, both the water-water and water-ion entropies contribute strongly. We show that the water-ion entropies are efficiently approximated using the Kirkwood superposition approximation. However, this approach cannot be applied to the water-water entropy. Furthermore, we test the quantitative validity of our method by computing salting-out coefficients and comparing them to experimental data. We find a good correlation to experimental salting-out constants, while the absolute values are overpredicted due to the approximate second order entropy. Since ions are frequently used in MD, either to neutralize the system or as a part of the investigated process, our method greatly extends the applicability of GIST. The use-cases range from biopharmaceuticals, where many assays require high salt concentrations, to environmental research, where solubility in sea water is important to model the fate of organic substances.
Collapse
Affiliation(s)
- Franz Waibl
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Johannes Kraml
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Johannes R Loeffler
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
14
|
Wen Y, Zuzhen S, Junru J, Hongyang Z, Xinmei H, Zhijun H, Jian Z, Qiliang C. High-Pressure Studies of Trimethylsilane Azide by Raman Scattering and Synchrotron X-ray Diffraction. J Phys Chem B 2021; 125:12042-12046. [PMID: 34704437 DOI: 10.1021/acs.jpcb.1c08492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have reported the high-pressure behavior of energetic material trimethylsilane azide ((CH3)3SiN3, TMSiN3) by in situ Raman scattering and synchrotron angle-dispersive X-ray diffraction (ADXRD) measurements in diamond anvil cells with a pressure up to ∼40 GPa at ambient temperature. The analyses of Raman spectra showed two liquid-liquid phase transitions at 0.13 and 7.9 GPa. The XRD results verified that TMSiN3 remained in a liquid state throughout the phase transitions. In the pressure range of 0.13-2.6 GPa, the distortion of the Si-C3 bond and the shortening of the bond between azide group and silicon atom lead to the first phase transition. The second transition is ascribed to the rotation of methyl group at 7.9 GPa. With further compression, the azide groups become increasingly asymmetric, and completely amorphous at 33.8 GPa. This paper is useful to understand the behavior of azide group and the molecular structural evolution of organic azide under high pressure. The unique high-pressure behavior of the azide group in TMSiN3 may be useful for improving in the formation of the polynitrogen compound with azides.
Collapse
Affiliation(s)
- Yang Wen
- School of Science, University of Science and Technology, Liaoning, Anshan 114051, China
| | - Shang Zuzhen
- School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051, China
| | - Jiang Junru
- School of Science, University of Science and Technology, Liaoning, Anshan 114051, China
| | - Zhu Hongyang
- School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China
| | - Hou Xinmei
- School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051, China
| | - He Zhijun
- School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051, China
| | - Zhang Jian
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Cui Qiliang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Hernandes VF, Marques MS, Bordin JR. Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:024002. [PMID: 34638114 DOI: 10.1088/1361-648x/ac2f0f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Characterization of phases of soft matter systems is a challenge faced in many physical chemical problems. For polymorphic fluids it is an even greater challenge. Specifically, glass forming fluids, as water, can have, besides solid polymorphism, more than one liquid and glassy phases, and even a liquid-liquid critical point. In this sense, we apply a neural network algorithm to analyze the phase behavior of a mixture of core-softened fluids that interact through the continuous-shouldered well (CSW) potential, which have liquid polymorphism and liquid-liquid critical points, similar to water. We also apply the neural network to mixtures of CSW fluids and core-softened alcohols models. We combine and expand methods based on bond-orientational order parameters to study mixtures, applied to mixtures of hardcore fluids and to supercooled water, to include longer range coordination shells. With this, the trained neural network was able to properly predict the crystalline solid phases, the fluid phases and the amorphous phase for the pure CSW and CSW-alcohols mixtures with high efficiency. More than this, information about the phase populations, obtained from the network approach, can help verify if the phase transition is continuous or discontinuous, and also to interpret how the metastable amorphous region spreads along the stable high density fluid phase. These findings help to understand the behavior of supercooled polymorphic fluids and extend the comprehension of how amphiphilic solutes affect the phases behavior.
Collapse
Affiliation(s)
- V F Hernandes
- Programa de Pós-Graduação em Física, Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96001-970, Pelotas-RS, Brazil
| | - M S Marques
- Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia Rua Bertioga, 892, Morada Nobre, CEP 47810-059, Barreiras-BA, Brazil
| | - José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96001-970, Pelotas-RS, Brazil
| |
Collapse
|
16
|
Eltareb A, Lopez GE, Giovambattista N. The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine. Phys Chem Chem Phys 2021; 23:19402-19414. [PMID: 34494044 PMCID: PMC8491127 DOI: 10.1039/d1cp02734d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental techniques, such as cryo-electron microscopy, require biological samples to be recovered at cryogenic temperatures (T ≈ 100 K) with water being in an amorphous ice state. However, (bulk) water can exist in two amorphous ices at P < 1 GPa, low-density amorphous (LDA) ice at low pressures and high-density amorphous ice (HDA) at high pressures; HDA is ≈20-25% denser than LDA. While fast/plunge cooling at 1 bar brings the sample into LDA, high-pressure cooling (HPC), at sufficiently high pressure, produces HDA. HDA can also be produced by isothermal compression of LDA at cryogenic temperatures. Here, we perform classical molecular dynamics simulations to study the effects of LDA, HDA, and the LDA-HDA transformation on the structure and hydration of a small peptide, polyalanine. We follow thermodynamic paths corresponding to (i) fast/plunge cooling at 1 bar, (ii) HPC at P = 400 MPa, and (iii) compression/decompression cycles at T = 80 K. While process (i) produced LDA in the system, path (iii) produces HDA. Interestingly, the amorphous ice produced in process (ii) is an intermediate amorphous ice (IA) with properties that fall in-between those of LDA and HDA. Remarkably, the structural changes in polyalanine are negligible at all conditions studied (0-2000 MPa, 80-300 K) even when water changes among the low and high-density liquid states as well as the amorphous solids LDA, IA, and HDA. The similarities and differences in the hydration of polyalanine vitrified in LDA, IA, and HDA are described. Since the studied thermodynamic paths are suitable for the cryopreservation of biomolecules, we also study the structure and hydration of polyalanine along isobaric and isochoric heating paths, which can be followed experimentally for the recovery of cryopreserved samples. Upon heating, the structure of polyalanine remains practically unchanged. We conclude with a brief discussion of the practical advantages of (a) using HDA and IA as a cryoprotectant environment (as opposed to LDA), and (b) the use of isochoric heating as a recovery process (as opposed to isobaric heating).
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
17
|
Zanetti-Polzi L, Amadei A, Daidone I. Segregation on the nanoscale coupled to liquid water polyamorphism in supercooled aqueous ionic-liquid solution. J Chem Phys 2021; 155:104502. [PMID: 34525825 DOI: 10.1063/5.0061659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The most intriguing hypothesis explaining many water anomalies is a metastable liquid-liquid phase transition (LLPT) at high pressure and low temperatures, experimentally hidden by homogeneous nucleation. Recent infrared spectroscopic experiments showed that upon addition of hydrazinium trifluoroacetate to water, the supercooled ionic solution undergoes a sharp, reversible LLPT at ambient pressure, possible offspring of that in pure water. Here, we calculate the temperature-dependent signature of the OH-stretching band, reporting on the low/high density phase of water, in neat water and in the same experimentally investigated ionic solution. The comparison between the infrared signature of the pure liquid and that of the ionic solution can be achieved only computationally, providing insight into the nature of the experimentally observed phase transition and allowing us to investigate the effects of ionic compounds on the high to low density supercooled liquid water transition. We show that the experimentally observed crossover behavior in the ionic solution can be reproduced only if the phase transition between the low- and high-density liquid states of water is coupled to a mixing-unmixing transition between the water component and the ions: at low temperatures, water and ions are separated and the water component is a low density liquid. At high temperatures, water and ions get mixed and the water component is a high-density liquid. The separation at low temperatures into ion-rich and ion-poor regions allows unveiling the polyamorphic nature of liquid water, leading to a crossover behavior resembling that observed in supercooled neat water under high pressure.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Center S3, CNR-Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00185 Rome, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy
| |
Collapse
|
18
|
|
19
|
Abstract
The question of whether a first-order liquid-to-liquid transition is at the origin of water’s anomalous properties has been controversial since the pioneering experiments by Mishima et al. in 1985 and molecular simulations by Poole et al. in 1992. Since then, experiments aimed at shedding light on this question have been performed using amorphous ices made from crystalline ice, fueling criticism about their crystal-like nature. In the present study, we avoid crystalline ice at any time of the experiment yet still observe a first-order glass-to-glass transition in vitrified liquid droplets. This makes the strong case for glass polymorphism and the direct thermodynamic connection to the liquid-to-liquid transition at higher temperatures, dismissing the criticism voiced for three decades. The nature of amorphous ices has been debated for more than 35 years. In essence, the question is whether they are related to ice polymorphs or to liquids. The fact that amorphous ices are traditionally prepared from crystalline ice via pressure-induced amorphization has made a clear distinction tricky. In this work, we vitrify liquid droplets through cooling at ≥106 K ⋅ s−1 and pressurize the glassy deposit. We observe a first order–like densification upon pressurization and recover a high-density glass. The two glasses resemble low- and high-density amorphous ice in terms of both structure and thermal properties. Vitrified water shows all features that have been reported for amorphous ices made from crystalline ice. The only difference is that the hyperquenched and pressurized deposit shows slightly different crystallization kinetics to ice I upon heating at ambient pressure. This implies a thermodynamically continuous connection of amorphous ices with liquids, not crystals.
Collapse
|
20
|
Kamenik AS, Handle PH, Hofer F, Kahler U, Kraml J, Liedl KR. Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding. J Chem Phys 2021; 153:185102. [PMID: 33187403 DOI: 10.1063/5.0022135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Molecular dynamics simulations are an invaluable tool to characterize the dynamic motions of proteins in atomistic detail. However, the accuracy of models derived from simulations inevitably relies on the quality of the underlying force field. Here, we present an evaluation of current non-polarizable and polarizable force fields (AMBER ff14SB, CHARMM 36m, GROMOS 54A7, and Drude 2013) based on the long-standing biophysical challenge of protein folding. We quantify the thermodynamics and kinetics of the β-hairpin formation using Markov state models of the fast-folding mini-protein CLN025. Furthermore, we study the (partial) folding dynamics of two more complex systems, a villin headpiece variant and a WW domain. Surprisingly, the polarizable force field in our set, Drude 2013, consistently leads to destabilization of the native state, regardless of the secondary structure element present. All non-polarizable force fields, on the other hand, stably characterize the native state ensembles in most cases even when starting from a partially unfolded conformation. Focusing on CLN025, we find that the conformational space captured with AMBER ff14SB and CHARMM 36m is comparable, but the ensembles from CHARMM 36m simulations are clearly shifted toward disordered conformations. While the AMBER ff14SB ensemble overstabilizes the native fold, CHARMM 36m and GROMOS 54A7 ensembles both agree remarkably well with experimental state populations. In addition, GROMOS 54A7 also reproduces experimental folding times most accurately. Our results further indicate an over-stabilization of helical structures with AMBER ff14SB. Nevertheless, the presented investigations strongly imply that reliable (un)folding dynamics of small proteins can be captured in feasible computational time with current additive force fields.
Collapse
Affiliation(s)
- Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Philip H Handle
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Bachler J, Fidler LR, Loerting T. Absence of the liquid-liquid phase transition in aqueous ionic liquids. Phys Rev E 2021; 102:060601. [PMID: 33466086 DOI: 10.1103/physreve.102.060601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022]
Abstract
The anomalies of supercooled water may be explained by an underlying liquid-liquid phase transition (LLPT) between high- and low-density states. Recently, its observation at 185 K was inferred using solutions containing aqueous ionic liquids at a solute mole fraction of x=0.156 [Woutersen et al., Science 359, 1127 (2018)10.1126/science.aao7049]. We employ x-ray diffraction, calorimetry, and dilatometry on these hydrazinium trifluoroacetate solutions at x=0.00-0.40 to show that the transition at 185 K is not related to a genuine LLPT of water. Continuous densification upon compression, continuous changes of halo position, and absence of thermal signatures for a high- to low-density transition rule out the possibility of an LLPT for x≥0.13. The data show that employing sophisticated solutions adds a layer of complexity that hampers extrapolation of the LLPT concept from one- to two-component systems. The possibility of an LLPT can only be probed for pure water or sufficiently dilute aqueous solutions.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Lilli-Ruth Fidler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
22
|
Marques MS, Hernandes VF, Lomba E, Bordin JR. Competing interactions near the liquid-liquid phase transition of core-softened water/methanol mixtures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ondrušková G, Veselý L, Zezula J, Bachler J, Loerting T, Heger D. Using Excimeric Fluorescence to Study How the Cooling Rate Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions: Vitrification and Crystallization. J Phys Chem B 2020; 124:10556-10566. [PMID: 33156630 DOI: 10.1021/acs.jpcb.0c07817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilized fluorescence spectroscopy to learn about the molecular arrangement of naphthalene (Np) and 1-methylnaphthalene (MeNp) in frozen aqueous solutions. The freezing induces pronounced compound aggregation in the freeze-concentrated solution (FCS) in between the ice grains. The fluorescence spectroscopy revealed prevalent formation of a vitrified solution and minor crystallization of aromatic compounds. The FCS is shown as a specific environment, differing significantly from not only the pure compounds but also the ice surfaces. The results indicate marked disparity between the behavior of the Np and the MeNp; the cooling rate has a major impact on the former but not on the latter. The spectrum of the Np solution frozen at a faster cooling rate (ca 20 K/min) exhibited a temperature-dependent spectral behavior, whereas the spectrum of the solution frozen at a slower rate (ca 2 K/min) did not alter before melting. We interpret the observation through considering the varied composition of the FCS: Fast freezing leads to a higher water content expressed by the plasticizing effect, allowing molecular rearrangement, while slow cooling produces a more concentrated and drier environment. The experiments were conceived as generalizable for environmentally relevant pollutants and human-made freezing.
Collapse
Affiliation(s)
- Gabriela Ondrušková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Zezula
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrine 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrine 52c, A-6020 Innsbruck, Austria
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
24
|
Suzuki Y, Takeya S. Slow Crystal Growth of Cubic Ice with Stacking Faults in a Glassy Dilute Glycerol Aqueous Solution. J Phys Chem Lett 2020; 11:9432-9438. [PMID: 33108207 DOI: 10.1021/acs.jpclett.0c02716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control of ice formation is an important issue as catastrophic ice growth influences our life activities and many industrial systems. We prepared a homogeneous glass of a dilute glycerol aqueous solution by a pressure liquid cooling vitrification method and examined the effect of solute on the ice formation of solvent water using a powder X-ray diffraction method. The solvent water immediately after the crystallization is composed of nanosized pure cubic ice (ice Ic). The crystal growth of ice Ic with stacking faults is much slower than that of pure water. The presence of glycerol molecules dispersing homogeneously may hinder crystal growth. The macroscopic segregation occurs rapidly during the transformation from stacking disordered ice to hexagonal ice. The results suggest that ice formation can be controlled by changing the solute type and concentration. This study has implications for thawing technology in cryobiology and frozen food engineering.
Collapse
Affiliation(s)
- Yoshiharu Suzuki
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Satoshi Takeya
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
26
|
Malfait B, Pouessel A, Jani A, Morineau D. Extension and Limits of Cryoscopy for Nanoconfined Solutions. J Phys Chem Lett 2020; 11:5763-5769. [PMID: 32590897 DOI: 10.1021/acs.jpclett.0c01564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work investigates the phase behavior of aqueous solutions of glycerol confined in MCM-41 and SBA-15 nanoporous matrixes by calorimetry. Limitations due to overfilling and eutectic freezing are prevented by the absence of an external liquid reservoir and by the glass-forming property of glycerol. Consequently, the stability of nanoconfined ice in equilibrium with aqueous solutions is studied over a wide range of compositions. In confinement, a large temperature depression of the liquidus line is observed. A thermodynamic model accounting simultaneously for the cryoscopic and the Gibbs-Thomson effects gives a consistent view of the phase diagram for large pores (Rp = 4.15 nm). For smaller pores (Rp = 1.8 nm), it reveals that the water activity strongly deviates from the bulk solution with the same composition, indicating the possible role of concentration heterogeneities in determining the onset of ice freezing in strongly nanoconfined solutions.
Collapse
Affiliation(s)
- Benjamin Malfait
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | - Alban Pouessel
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | - Aîcha Jani
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| | - Denis Morineau
- Institute of Physics of Rennes, CNRS-University of Rennes 1, UMR 6251, F-35042 Rennes, France
| |
Collapse
|
27
|
Suzuki Y. Non-segregated crystalline state of dilute glycerol aqueous solution. J Chem Phys 2020; 152:144501. [DOI: 10.1063/5.0003787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yoshiharu Suzuki
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|