1
|
Wang D, Yang Y, Li S, Chen D. Structural Evolution of Small-Sized Phosphorus-Doped Boron Clusters: A Half-Sandwich-Structured PB 15 Cluster. Molecules 2024; 29:3384. [PMID: 39064962 PMCID: PMC11280394 DOI: 10.3390/molecules29143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study is a theoretical investigation into the structural evolution, electronic properties, and photoelectron spectra of phosphorus-doped boron clusters PBn0/- (n = 3-17). The results of this study revealed that the lowest energy structures of PBn- (n = 3-17) clusters, except for PB17-, exhibit planar or quasi-planar structures. The lowest energy structures of PBn (n = 3-17), with the exceptions of PB7, PB9, and PB15, are planar or quasi-planar. The ground state of PB7 has an umbrella-shaped structure, with C6V symmetry. Interestingly, the neutral cluster PB15 has a half-sandwich-like structure, in which the P atom is attached to three B atoms at one end of the sandwich, exhibiting excellent relative and chemical stability due to its higher second-order energy difference and larger HOMO-LUMO energy gap of 4.31 eV. Subsequently, adaptive natural density partitioning (AdNDP) and electron localization function (ELF) analyses demonstrate the bonding characteristics of PB7 and PB15, providing support for the validity of their stability. The calculated photoelectron spectra show distinct characteristic peaks of PBn- (n = 3-17) clusters, thus providing theoretical evidence for the future identification of doped boron clusters. In summary, our work has significant implications for understanding the structural evolution of doped boron clusters PBn0/- (n = 3-17), motivating further experiments regarding doped boron clusters.
Collapse
Affiliation(s)
| | | | - Shixiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China; (D.W.); (Y.Y.); (D.C.)
| | | |
Collapse
|
2
|
Zhang YH, Wang HQ, Li HF, Zeng JK, Zheng H, Mei XJ, Zhang JM, Jiang KL, Zhang B, Wu WH. Probing the Structural and Electronic Properties of the Anionic and Neutral Tellurium-Doped Boron Clusters TeB nq ( n = 3-16, q = 0, -1). J Phys Chem A 2024; 128:5459-5472. [PMID: 38973649 DOI: 10.1021/acs.jpca.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In this study, we employ density functional theory along with the artificial bee colony algorithm for cluster global optimization to explore the low-lying structures of TeBnq (n = 3-16, q = 0, -1). The primary focus is on reporting the structural properties of these clusters. The results reveal a consistent doping pattern of the tellurium atom onto the in-plane edges of planar or quasi-planar boron clusters in the most energetically stable isomers. Additionally, we simulate the photoelectron spectra of the cluster anions. Through relative stability analysis, we identify three clusters with magic numbers -TeB7-, TeB10, and TeB12. The aromaticity of these clusters is elucidated using adaptive natural density partitioning (AdNDP) and magnetic properties analysis. Notably, TeB7- exhibits a perfect σ-π doubly aromatic structure, while TeB12 demonstrates strong island aromaticity. These findings significantly contribute to our understanding of the structural and electronic properties of these clusters.
Collapse
Affiliation(s)
- Yong-Hang Zhang
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Huai-Qian Wang
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| | - Hui-Fang Li
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| | - Jin-Kun Zeng
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hao Zheng
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xun-Jie Mei
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| | - Jia-Ming Zhang
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai-Le Jiang
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Bo Zhang
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wen-Hai Wu
- College of Engineering, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
3
|
Chen Q, Chen WJ, Wu XY, Chen TT, Yuan RN, Lu HG, Yuan DF, Li SD, Wang LS. Investigation of Pb-B Bonding in PbB 2(BO) n- ( n = 0-2): Transformation from Aromatic PbB 2- to Pb[B 2(BO) 2] -/0 Complexes with BB Triple Bonds. Phys Chem Chem Phys 2024; 26:5356-5367. [PMID: 38269413 DOI: 10.1039/d3cp02800c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Boron has been found to be able to form multiple bonds with lead. To probe Pb-B bonding, here we report an investigation of three Pb-doped boron clusters, PbB2-, PbB3O-, and PbB4O2-, which are produced by a laser ablation cluster source and characterized by photoelectron spectroscopy and ab initio calculations. The most stable structures of PbB2-, PbB3O-, and PbB4O2- are found to follow the formula, [PbB2(BO)n]- (n = 0-2), with zero, one, and two boronyl ligands coordinated to a triangular and aromatic PbB2 core, respectively. The PbB2- cluster contains a BB double bond and two Pb-B single bonds. The coordination of BO is observed to weaken Pb-B bonding but strengthen the BB bond in [PbB2(BO)n]- (n = 1, 2). The anionic [PbB2(BO)2]- and its corresponding neutral closed-shell [PbB2(BO)2] contain a BB triple bond. A low-lying Y-shaped isomer is also observed for PbB4O2-, consisting of a central sp2 hybridized B atom bonded to two boronyl ligands and a PbB unit.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Xin-Yao Wu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China.
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong SAR, China
| | - Rui-Nan Yuan
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China.
| | - Hai-Gang Lu
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Si-Dian Li
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
4
|
Li SX, Yang YJ, Chen DL. PB 12+ and P 2B 12+/0/-: The Novel B 12 Cage Doped by Nonmetallic P Atoms. ACS OMEGA 2023; 8:44831-44838. [PMID: 38046297 PMCID: PMC10688167 DOI: 10.1021/acsomega.3c06002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
A new kind of nonmetallic atom-doped boron cluster is described herein theoretically. When a phosphorus atom is added to the B12 motif and loses an electron, a novel B12 cage is obtained, composed of two B3 rings at both ends and one B6 ring in the middle, forming a triangular bifrustum. Interestingly, this B12 cage is formed by three B7 units joined together from three directions at an angle of 120°. When two P atoms are added to the B12 motif, this novel B12 cage is also obtained, and two P atoms are attached to the B3 rings at both ends of the triangular bifrustum, forming a triangular bipyramid (Johnson solid). Amazingly, the global minimums of neutral, monocationic, and monoanionic P2B12+/0/- have the same cage structure with a D3h symmetry; this is the smallest boron cage with the same structure. The P atom has five valence electrons, according to adaptive natural density partitioning bonding analyses of cage PB12+ and P2B12, in addition to one lone pair, the other three electrons of the P atom combine with an electron of each B atom on the B3 ring to form three 2c-2e σ bonds and form three electron sharing bonds with B atoms through covalent interactions, stabilizing the B12 cage. The calculated photoelectron spectra can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of PnB12- (n = 1-2).
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
5
|
Zuo J, Zhang L, Chen B, He K, Dai W, Ding K, Lu C. Geometric and electronic structures of medium-sized boron clusters doped with plutonium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:015302. [PMID: 37767896 DOI: 10.1088/1361-648x/acfc0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Doping metal heteroatoms is an effective strategy to regulate the geometric and electronic structure of boron based nanoclusters. However, the exploration of the ground state structures of metal-boron-based nanoclusters is still a challenge duo to the complexity of the bonding interactions between heterogeneous atoms and boron cluster and the number of isomers on the potential energy surface increases exponentially with cluster size. Here, we use the CALYPSO cluster structural search method in combination with density functional theory calculations to study the geometries and electronic properties of anionic boron clusters doped with plutonium (PuBn-,n= 10-20). Our results show that the medium-sized PuB14-cluster exhibits excellent stability with highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap of 2.30 eV. The remarkable stability of the anionic PuB14-cluster is due to the robust interactions between the Pu metal and the B14skeleton, along with the strong covalent interactions between the B atoms. These findings enrich the geometric structure database of metal doped clusters and provide valuable insights for the future synthesis of boron based nanomaterials.
Collapse
Affiliation(s)
- Jingning Zuo
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lili Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Bole Chen
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, People's Republic of China
| | - Kewei Ding
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an 710065, People's Republic of China
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
6
|
Li SX, Yang YJ, Chen DL. Structural Evolution and Electronic Properties of Two Sulfur Atom-Doped Boron Clusters. ACS OMEGA 2023; 8:30757-30767. [PMID: 37636960 PMCID: PMC10448743 DOI: 10.1021/acsomega.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
We present a theoretical study of structural evolution, electronic properties, and photoelectron spectra of two sulfur atom-doped boron clusters S2Bn0/- (n = 2-13), which reveal that the global minima of the S2Bn0/- (n = 2-13) clusters show an evolution from a linear-chain structure to a planar or quasi-planar structure. Some S-doped boron clusters have the skeleton of corresponding pure boron clusters; however, the addition of two sulfur atoms modified and improved some of the pure boron cluster structures. Boron is electron-deficient and boron clusters do not form linear chains. Here, two sulfur atom doping can adjust the pure boron clusters to a linear-chain structure (S2B20/-, S2B30/-, and S2B4-), a quasi-linear-chain structure (S2B6-), single- and double-chain structures (S2B6 and S2B9-), and double-chain structures (S2B5, and S2B9). In particular, the smallest linear-chain boron clusters S2B20/- are shown with an S atom attached to each end of B2. The S2B2 cluster possesses the largest highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of 5.57 eV and the S2B2- cluster possesses the largest average binding energy Eb of 5.63 eV, which shows the superior chemical stability and relative stability, respectively. Interestingly, two S-atom doping can adjust the quasi-planar pure boron clusters (B7-, B10-, and B120/-) to a perfect planar structure. AdNDP bonding analyses reveal that linear S2B3 and planar SeB11- have π aromaticity and σ antiaromaticity; however, S2B2, planar S2B6, and planar S2B7- clusters have π antiaromaticity and σ aromaticity. Furthermore, AdNDP bonding analyses reveal that planar S2B4, S2B10, and S2B12 clusters are doubly (π and σ) aromatic, whereas S2B5-, S2B8, S2B9-, and S2B13- clusters are doubly (π and σ) antiaromatic. The electron localization function (ELF) analysis shows that S2Bn0/- (n = 2-13) clusters have different electron delocalization characteristics, and the spin density analysis shows that the open-shell clusters have different characteristics of electron spin distribution. The calculated photoelectron spectra indicate that S2Bn- (n = 2-13) have different characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these doped boron clusters. Our work enriches the new database of geometrical structures of doped boron clusters, provides new examples of aromaticity for doped boron clusters, and is promising to offer new ideas for nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
7
|
Milon, Roy D, Ahmed F. A DFT study to investigate the physical, electrical, optical properties and thermodynamic functions of boron nanoclusters (M xB 2n0; x=1,2, n=3,4,5). Heliyon 2023; 9:e17886. [PMID: 37539100 PMCID: PMC10395302 DOI: 10.1016/j.heliyon.2023.e17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
First Principle DFT calculations employing the B3LYP/LanL2DZ/SDD level of theory were used to analyze the various characteristics of boron nanoclusters (B6, B8, and B10). These pure structures were further doped with four transition metals (Ta, Ti, Tc, and V) to examine the enhancement of the pure structures' structural, electrical, and optical features. To study structural stability, we have estimated cohesion energy and imaginary frequencies. Cohesion energies were entirely negative, with a range of -3.37 eV to -8.07 eV, and most constructions had no imaginary frequencies, indicating their structural occurrences. The calculated adsorption energy suggests that the order of stability of the pristine boron nanoclusters is B10>B8>B6, and TcB10 and Tc2B10 are the more stable structures. Mulliken charge, DOS, HOMO-LUMO, and the HOMO-LUMO gap have all been examined in-depth to provide insight into electrical characteristics. UV-Vis and CD measurements show the doped boron nanoclusters have excellent optical properties. Aside from calculating thermodynamic functions, we have also calculated the global DFT parameters, which give us a deep quantum mechanical understanding of the optimized structure for further research and applications in the field of science and technology.
Collapse
Affiliation(s)
- Milon
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jhangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
8
|
Chen B, He K, Dai W, Gutsev GL, Lu C. Geometric and electronic diversity of metal doped boron clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183002. [PMID: 36827740 DOI: 10.1088/1361-648x/acbf18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Being intermediate between small compounds and bulk materials, nanoparticles possess unique properties different from those of atoms, molecules, and bulk matter. In the past two decades, a combination of cluster structure prediction algorithms and experimental spectroscopy techniques was successfully used for exploration of the ground-state structures of pure and metal-doped boron clusters. The fruitfulness of this dual approach is well illustrated by the discovery of intriguing microstructures and unique physicochemical properties such as aromaticity and bond fluxionality for both boron and metal-doped boron clusters. Our review starts with an overview of geometrical configurations of pure boron clusters Bn, which are presented by planar, nanotube, bilayer, fullerene-like and core-shell structures, in a wide range ofnvalues. We consider next recent advances in studies of boron clusters doped with metal atoms paying close and thoughtful attention to modifications of geometric and electronic structures of pure boron clusters by heteroatoms. Finally, we discuss the possibility of constructing boron-based nanomaterials with specific functions from metal-boron clusters. Despite a variety of fruitful results obtained in numerous studies of boron clusters, the exploration of boron-based chemistry has not yet reached its peak. The intensive research continues in this area, and it should be expected that it brings exciting discoveries of intriguing new structures.
Collapse
Affiliation(s)
- Bole Chen
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, People's Republic of China
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
9
|
Zhao B, Wang L, Tao Q, Zhu P. The structure and multifunctionality of high-boron transition metal borides . JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:173001. [PMID: 36758243 DOI: 10.1088/1361-648x/acbad6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
High boron content transition metal (TM) borides (HB-TMBs) have recently been regarded as the promising candidate for superhard multifunctional materials. High hardness stems from the covalent bond skeleton formed by high content of boron (B) atoms to resist deformation. High valence electron density of TM and special electronic structure fromp-dhybridization of B and TM are the sources of multifunction. However, the reason of hardness variation in different HB-TMBs is still a puzzle because hardness is a complex property mainly associated with structures, chemical bonds, and mechanical anisotropy. Rich types of hybridization in B atoms (sp, sp2, sp3) generate abundant structures in HB-TMBs. Studying the intrinsic interaction of structures and hardness or multifunction is significant to search new functional superhard materials. In this review, the stable structure, hardness, and multifunctionality of HB-TMBs are summarized. It is concluded that the structures of HB-TMBs are mainly composed by sandwiched stacking of B and TM layers. The hardness of HB-TMBs shows a increasing tendency with the decreasing atom radius. The polyhedron in strong B skeleton provides hardness support for HB-TMBs, among which C2/mis the most possible structure to meet the superhard standard. The shear modulus (G0) generates a positive effect for hardness of HB-TMBs, but the effect from bulk modulus (G0) is complex. Importantly, materials with a value ofB0/G0less than 1.1 are more possible to achieve the superhard standard. As for the electronic properties, almost all TMB3and TMB4structures exhibit metallic properties, and their density of states near the Fermi level are derived from the d electrons of TM. The excellent electrical property of HB-TMBs with higher B ratio such as ZrB12comes from the channels between B-Bπ-bond and TM-d orbitals. Some HB-TMBs also indicate superconductivity from special structures, most of them have stronger hybridization of d electrons from TM atoms than p electrons from B atoms near the Fermi level. This work is meaningful to further understand and uncover new functional superhard materials in HB-TMBs.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
10
|
Li YY, Hu YF, Lai Q, Yuan YQ, Huang TX, Li QY, Huang HB. Inquiring into geometric structures and electronic properties of sodium doped boron clusters: DFT study of NaB n ( n = 1–12) clusters. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yuan Yuan Li
- Department of Applied Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, People’s Republic of China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
- Panzhihua Engineering Technology Research Center, College of Material Engineering, Panzhihua University, Panzhihua, People’s Republic of China
| | - Yan Fei Hu
- Department of Applied Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, People’s Republic of China
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Qi Lai
- Panzhihua Engineering Technology Research Center, College of Material Engineering, Panzhihua University, Panzhihua, People’s Republic of China
| | - Yu Quan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Teng Xin Huang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Qing Yang Li
- Department of Applied Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu, People’s Republic of China
| | - Hong Bin Huang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| |
Collapse
|
11
|
Yang YJ, Li SX, Chen DL, Long ZW. Structural Evolution and Electronic Properties of Selenium-Doped Boron Clusters SeB n0/- (n = 3-16). Molecules 2023; 28:357. [PMID: 36615549 PMCID: PMC9824103 DOI: 10.3390/molecules28010357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Lu QL, Liu XD, Luo QQ, Wang CR. Quasi-planar Co atom-doped boron cluster: CoB 192. J Mol Model 2022; 29:7. [PMID: 36495336 DOI: 10.1007/s00894-022-05404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE AND METHODS A global search for the lowest energy structure of CoB192- clusters was conducted. RESULTS: Its ground state is a quasi-planar structure with the Co atom surrounded by a B8 ring. The central Co atom has an oxidation state of +1 with d8 electron configuration. The wave function analysis showed that the Co-B interaction is not a covalent bond. The bonding strength of peripheral B-B bonds is stronger than that of inner ones. The inner B8 ring bonds with outer boron atoms via σ- and π-type bonds. CONCLUSION CoB192- shows remarkable aromatic character.
Collapse
Affiliation(s)
- Qi Liang Lu
- School of Physics and Material Science, Anhui University, Hefei, 230601, Anhui, People's Republic of China.
| | - Xiao Dong Liu
- School of Physics and Material Science, Anhui University, Hefei, 230601, Anhui, People's Republic of China
| | - Qi Quan Luo
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.,Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Chen Ri Wang
- School of Physics and Material Science, Anhui University, Hefei, 230601, Anhui, People's Republic of China
| |
Collapse
|
13
|
Li SX, Yang YJ, Chen DL, Long ZW. Structures, and electronic and spectral properties of single-atom transition metal-doped boron clusters MB 24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni). RSC Adv 2022; 12:16706-16716. [PMID: 35754907 PMCID: PMC9169616 DOI: 10.1039/d2ra02500k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the MB24 - (M = Sc, Ti, V, and Cr) clusters correspond to cage structures, and the MB24 - (M = Mn, Fe, and Co) clusters have similar distorted four-ring tubes with six boron atoms each. Interestingly, the global minima obtained for the NiB24 - cluster tend to a quasi-planar structure. Charge population analyses and valence electron density analyses reveal that almost one electron on the transition-metal atoms transfers to the boron atoms. The electron localization function (ELF) of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) indicates that the local delocalization of MB24 - (M = Sc, Ti, V, Cr, and Ni) is weaker than that of MB24 - (M = Mn, Fe, and Co), and there is no obvious covalent bond between doped metal and B atoms. The spin density and spin population analyses reveal that open-shell MB24 - (M = Ti, Cr, Fe, and Ni) has different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The polarizability of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) shows that MB24 - (M = Mn, Fe, and Co) has larger first hyperpolarizability, indicating that MB24 - (M = Mn, Fe, and Co) has a strong nonlinear optical response. Hence, MB24 - (M = Mn, Fe, and Co) might be considered as a promising nonlinear optical boron-based nanomaterial. The calculated spectra indicate that MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) has different and meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University Guiyang 550018 Guizhou People's Republic of China
| | - Zheng-Wen Long
- College of Physics, Guizhou University Guiyang 550025 Guizhou People's Republic of China
| |
Collapse
|
14
|
Zhang X, Hu Y, Yuan Y, Li Q, Jiang H, Yang J, Lin W, Huang H. Structure and electronic properties of neutral and anionic boron clusters doped with two tantalum atoms. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2029964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xincheng Zhang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Yanfei Hu
- Department of Applied Physics, Chengdu University of Technology, Chengdu, People’s Republic of China
| | - Yuquan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Qingyang Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Hongming Jiang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Jing Yang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| | - Wei Lin
- Department of Physics, Chengdu Experimental Foreign Languages School, Chengdu, People’s Republic of China
| | - Hongbing Huang
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, People’s Republic of China
| |
Collapse
|
15
|
Barroso J, Pan S, Merino G. Structural transformations in boron clusters induced by metal doping. Chem Soc Rev 2022; 51:1098-1123. [PMID: 35029622 DOI: 10.1039/d1cs00747e] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the last decades, experimental techniques in conjunction with theoretical analyses have revealed the surprising structural diversity of boron clusters. Although the 2D to 3D transition thresholds are well-established, there is no certainty about the factors that determine the geometry adopted by these systems. The structural transformation induced by doping usually yields a minimum energy structure with a boron skeleton entirely different from that of the bare cluster. This review summarizes those clusters no larger than 40 boron atoms where one or two dopants show a radical transformation of the structure. Although the structures of these systems are not easy to predict, they often adopt familiar shapes such as umbrella-like, wheel, tubular, and cages in various cases.
Collapse
Affiliation(s)
- Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| | - Sudip Pan
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex 97310, Mérida, Yuc., Mexico.
| |
Collapse
|
16
|
Zhang NX, Wang C, Wu Q, Lan J, Chai Z, Shi W. Highly stable actinide(III) complexes supported by doubly aromatic ligands. Phys Chem Chem Phys 2022; 24:5921-5928. [DOI: 10.1039/d1cp05058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the electron-deficient nature of boron atom, the structures and properties of boron clusters can be enriched by doping various metal atoms, including lanthanide metal atoms. Nevertheless, the viability...
Collapse
|
17
|
Ariyarathna IR. Ground and Electronically Excited States of Main-Group-Metal-Doped B 20 Double Rings. J Phys Chem A 2021; 126:506-512. [PMID: 34939805 DOI: 10.1021/acs.jpca.1c08631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ab initio coupled-cluster, electron propagator, and Møller-Plesset second-order perturbation theory calculations are utilized to analyze the low-lying electronic states of several metal-doped B20. In the ground state, the presently focused AB20/EB20 (A = Li, Na, and K; E = Mg and Ca) consist of charge-separated A+B20-/E2+B202- frameworks. The excited electronic states of AB20 and EB20+ were analyzed by computing the vertical electron attachment energies (VEAEs) of AB20+ and EB202+. In several excited states, the radical electron is predominantly localized on the B20 frames, which are counterparts of the low-lying states of bare B20-. A variety of basis sets were tested on obtaining VEAEs, and the aug-cc-pVDZ/A,E d-aug-cc-pVDZ/B combination provided the best accuracy-efficiency compromise on them. Furthermore, this work analyzes the Rydberg-like excited states of AB20 and EB20+ and will serve as a guide for future studies on similar metal-doped boron systems.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
18
|
Yang YJ, Li SX, Chen DL, Long ZW. Structural and Electronic Properties of Single-Atom Transition Metal-Doped Boron Clusters MB 24 (M = Sc, V, and Mn). ACS OMEGA 2021; 6:30442-30450. [PMID: 34805674 PMCID: PMC8600523 DOI: 10.1021/acsomega.1c03740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 (M = Sc, V, and Mn) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the VB24 and MnB24 clusters correspond to cage structures. Interestingly, the global minima obtained for the ScB24 cluster tend to a three-ring tubular structure. Population analyses and valence electron density analyses reveal that partial electrons on transition-metal atoms transfer to boron atoms. The localized orbital locator of MB24 (M = Sc, V, and Mn) indicates that the electron delocalization of ScB24 is stronger than that of VB24 and MnB24, and there is no obvious covalent bond between doped metals and B atoms. The spin density and spin population analyses reveal that MB24 (M = Sc, V, and Mn) have different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The calculated spectra indicate that MB24 (M = Sc, V, and Mn) has meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College
of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Yu R, Pan S, Cui ZH. OsB 9 -: An Aromatic Osmium-Centered Monocyclic Boron Ring. Front Chem 2021; 9:751482. [PMID: 34568288 PMCID: PMC8460756 DOI: 10.3389/fchem.2021.751482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Transition-metal-centered monocyclic boron wheels are important candidates in the family of planar hypercoordinate species that show intriguing structure, stability and bonding situation. Through the detailed potential energy surface explorations of MB9− (M = Fe, Ru, Os) clusters, we introduce herein OsB9− to be a new member in the transition-metal-centered borometallic molecular wheel gallery. Previously, FeB9− and RuB9− clusters were detected by photoelectron spectroscopy and the structures were reported to have singlet D9h symmetry. Our present results show that the global minimum for FeB9− has a molecular wheel-like structure in triplet spin state with Cs symmetry, whereas its heavier homologues are singlet molecular wheels with D9h symmetry. Chemical bonding analyses show that RuB9− and OsB9− display a similar type of electronic structure, where the dual σ + π aromaticity, originated from three delocalized σ bonds and three delocalized π bonds, accounts for highly stable borometallic molecular wheels.
Collapse
Affiliation(s)
- Rui Yu
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China
| | - Sudip Pan
- Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, China.,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
20
|
Rodríguez‐Kessler PL, Rodríguez‐Domínguez AR, MacLeod‐Carey D, Muñoz‐Castro A. Exploring the Size‐Dependent Hydrogen Storage Property on Ti‐Doped B
n
Clusters by Diatomic Deposition: Temperature Controlled H
2
Release. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peter L. Rodríguez‐Kessler
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| | | | - Desmond MacLeod‐Carey
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| | - Alvaro Muñoz‐Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| |
Collapse
|
21
|
Ohlin CA. Computational exploration of heterometal substitution into the decaniobate framework, [Nb 10O 28] 6. Phys Chem Chem Phys 2021; 23:10402-10408. [PMID: 33889893 DOI: 10.1039/d1cp01092a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The factors governing the substitution of group 4B-12B metals into the decaniobate framework are explored using density functional theory in order to ascertain whether (1) recently isolated [MNb9O28]x- clusters are kinetic or thermodynamic products, (2) density functional theory is a sufficient level of theory to accurately predict substitution patterns in polyoxometalates where ion pairing and other effects may operate, and (3) it can be used to guide future synthetic efforts. Computations using restricted, unrestricted and open-shell density functional theory at PBE0/def2-tzvp were found to correctly predict substitution patterns in known clusters, and were subsequently used to calculate the relative energies of a large series of [MNb9O28]x- clusters, to reveal trends and suggest potential synthetic approaches. OPBE/def2-tzvp correctly predicted favoured spin states of known substituted decametalates.
Collapse
Affiliation(s)
- C André Ohlin
- Department of Chemistry, Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
Tian WJ, Chen WJ, Yan M, Li R, Wei ZH, Chen TT, Chen Q, Zhai HJ, Li SD, Wang LS. Transition-metal-like bonding behaviors of a boron atom in a boron-cluster boronyl complex [(η 7-B 7)-B-BO] . Chem Sci 2021; 12:8157-8164. [PMID: 34194706 PMCID: PMC8208299 DOI: 10.1039/d1sc00534k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Boron displays many unusual structural and bonding properties due to its electron deficiency. Here we show that a boron atom in a boron monoxide cluster (B9O−) exhibits transition-metal-like properties. Temperature-dependent photoelectron spectroscopy provided evidence of the existence of two isomers for B9O−: the main isomer has an adiabatic detachment energy (ADE) of 4.19 eV and a higher energy isomer with an ADE of 3.59 eV. The global minimum of B9O− is found surprisingly to be an umbrella-like structure (C6v, 1A1) and its simulated spectrum agrees well with that of the main isomer observed. A low-lying isomer (Cs, 1A′) consisting of a BO unit bonded to a disk-like B8 cluster agrees well with the 3.59 eV ADE species. The unexpected umbrella-like global minimum of B9O− can be viewed as a central boron atom coordinated by a η7-B7 ligand on one side and a BO ligand on the other side, [(η7-B7)-B-BO]−. The central B atom is found to share its valence electrons with the B7 unit to fulfill double aromaticity, similar to that in half-sandwich [(η7-B7)-Zn-CO]− or [(η7-B7)-Fe(CO)3]− transition-metal complexes. The ability of boron to form a half-sandwich complex with an aromatic ligand, a prototypical property of transition metals, brings out new metallomimetic properties of boron. The global minimum of the B9O− cluster is found to have an umbrella-like structure, where the central B atom exhibits transition-metal-like bonding properties, coordinated by a η7-B7 ligand on one side and a BO ligand on the other.![]()
Collapse
Affiliation(s)
- Wen-Juan Tian
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Wei-Jia Chen
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Miao Yan
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Rui Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Zhi-Hong Wei
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Qiang Chen
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Hua-Jin Zhai
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| |
Collapse
|
23
|
Zhang P, Liu H, Zou W, Zhang P, Hu SX. Relativistic Effects Stabilize the Planar Wheel-like Structure of Actinide-Doped Gold Clusters: An@Au 7 (An = Th to Cm). J Phys Chem A 2020; 124:8173-8183. [PMID: 32845148 DOI: 10.1021/acs.jpca.0c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the chemistry of actinide-ligand bonding is continuing and of burgeoning interest, investigations of the chemical bonding of bimetallic complexes involving transuranics remain relatively less, and there are rarely studies on the bonding features between actinide and coinage metals (CM). We present a systematic research on the series of An@Au7 (An = Th to Cm), UCM7 (CM = Cu, Ag, Au), and WAu7 clusters to investigate the unique geometries, electronic structures, and chemical bonding between An 5f6d orbitals and CM ns orbitals, and to find their periodicity across the actinides and within the group of transition metals. A unique planar wheel-like structure for An@Au7 clusters with the help of actinide metals encapsulation via spin-orbit coupling, resulting in An(III). Instead, the transition-metal (TM) element W retains its usual six-gold-coordination structure in WAu7, thus forcing the seventh Au out of plane. The An-CM interactions, depending on the ion radii, become stronger with the increase of the atomic number of the actinide metals, as well as the CM. These results show that the presence of actinides in clusters can lead to unique electronic and geometrical structures.
Collapse
Affiliation(s)
- Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Ping Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
24
|
Li SX, Zhang ZP, Long ZW, Chen DL. Structures, Electronic, and Spectral Properties of Doped Boron Clusters MB 12 0/- (M = Li, Na, and K). ACS OMEGA 2020; 5:20525-20534. [PMID: 32832805 PMCID: PMC7439372 DOI: 10.1021/acsomega.0c02693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Structures and electronic properties of alkali metal atom-doped boron clusters MB12 0/- (M = Li, Na, K) are determined using the CALYPSO method for the global minimum search followed by density functional theory. It is found that the global minima obtained for the neutral clusters correspond to the half-sandwich structure and those of the monoanionic clusters correspond to the boat-shaped structure. The neutral MB12 (M = Li, Na, K) can be considered as a member of the half-sandwich doped B12 clusters, and the geometrical pattern of anion MB12 - (M = Li, Na, K) is a new structure that is different from other doped B12 clusters. Natural population and chemical bonding analyses reveal that the alkali metal atom-doped boron clusters MB12 - are characterized as charge transfer complexes, M+B12 2-, resulting in symmetrically distributed chemical bonds and electrostatic interactions between cationic M+ and boron atoms. The calculated spectra indicate that MB12 0/- (M = Li, Na, K) has meaningful spectral features that can be compared with future experimental data. Our work enriches the varieties of geometrical structures of doped boron clusters and can provide much insight into boron nanomaterials.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Ping Zhang
- College
of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Wen Long
- College
of physics, Guizhou University, Guiyang 550025, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| |
Collapse
|
25
|
Zeng L, Deng PJ, Bi J, Zhu BC. Searching new structures of beryllium-doped in small-sized magnesium clusters: Be 2 Mg n Q (Q = 0, -1; n = 1-11) clusters DFT study. J Comput Chem 2020; 41:1885-1897. [PMID: 32510641 DOI: 10.1002/jcc.26359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023]
Abstract
Using CALYPSO method to search new structures of neutral and anionic beryllium-doped magnesium clusters followed by density functional theory (DFT) calculations, an extensive study of the structures, electronic and spectral properties of Be2 Mgn Q (Q = 0, -1; n = 2-11) clusters is performed. Based on the structural optimization, it is found that the Be2 Mgn Q (Q = 0, -1) clusters are shown by tetrahedral-based geometries at n = 2-6 and tower-like-based geometries at n = 7-11. The calculations of stability indicate that Be2 Mg5 Q=0 , Be2 Mg5 Q=-1 , and Be2 Mg8 Q=-1 clusters are "magic" clusters with high stability. The NCP shows that the charges are transferred from Mg atoms to Be atoms. The s- and p-orbitals interactions of Mg and Be atoms are main responsible for their NEC. In particular, chemical bond analysis including molecular orbitals (MOs) and chemical bonding composition for magic clusters to further study their stability. The results confirmed that the high stability of these clusters is due to the interactions between the Be atom and the Mg5 or Mg8 host. Finally, theoretical calculations of infrared and Raman spectra of the ground state of Be2 Mgn Q (Q = 0, -1; n = 1-11) clusters were performed, which will be absolutely useful for future experiments to identify these clusters.
Collapse
Affiliation(s)
- Lu Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing, China
| | - Ping-Ji Deng
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China
| | - Jie Bi
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, China
| | - Ben-Chao Zhu
- School of Public Health and Management, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
26
|
Hu SX, Zhang P, Zou W, Zhang P. New theoretical insights into high-coordination-number complexes in actinides-centered borane. NANOSCALE 2020; 12:15054-15065. [PMID: 32400819 DOI: 10.1039/d0nr01955k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The coordination number of a given element affects its behavior, and consequently, there is great interest in understanding the related chemistry, which could greatly promote the extension and development of new materials, but remains challenging. Herein, we report a new record high coordination number (CN) for actinides established in the cage-like An(BH)24 (An = Th to Cm) via using relativistic quantum chemistry methods. Analysis of U(BH)n (n = 1 to 24) confirmed these series of systems as being geometric minima, with the BH acting as a ligand located in the first shell around the uranium. In contrast, global searches revealed a low CN half-cage structure for UB24, which could be extended to the series of AnB24 materials and which prevails over the competing structural isomers, such as cages. The intrinsic geometric difference for AnB24 and An(BH)24 mainly arise from the B sp3 hybridization in borane inducing strong interactions between An 5f6d7s hybrid orbitals and B 2pz orbitals in An(BH)24 compared to that of AnB24. This fundamental trend presents a valuable insight for future experimental endeavors searching for isolable complexes with high-coordination actinide and provides details of a new structural motif of boron clusters and nanostructures.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China and Beijing Computational Science Research Center, Beijing 100193, China. and Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, 710127, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China.
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, 710127, China
| | - Ping Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
27
|
Shakerzadeh E, Duong LV, Pham-Ho MP, Tahmasebi E, Nguyen MT. The teetotum cluster Li 2FeB 14 and its possible use for constructing boron nanowires. Phys Chem Chem Phys 2020; 22:15013-15021. [PMID: 32597424 DOI: 10.1039/d0cp02046j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic density functional theory (DFT) calculations using the TPSSh functional and the def2-TZVP basis set were carried out to identify the global energy minimum structure of the Li2FeB14 cluster. Keeping the double ring tubular shape of FeB14, capping of two Li atoms leads to a teetotum form at a low spin state, in which the Fe atom is endohedrally covered by two B7 strings, and both Li atoms are attached to Fe along the C7 axis at both sides. Calculated results show that strong electrostatic interactions between 2Li+ and Fe2- arising from Li electron transfer upon doping particularly provide a key driving force for stabilizing this charge-transfer structure. The bonding pattern of the teetotum can be understood from the hollow cylinder model (HCM). TD-DFT calculations demonstrate that this cluster can also be regarded as a useful material for transparent optoelectronic devices. Furthermore, the Li2FeB14 superatom can be used as a building block for making boron-based nanowires with metallic character. Replacement of Li atoms by Mg atoms was also found to lead to nanowires.
Collapse
Affiliation(s)
- Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Long Van Duong
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam and Department of Chemistry, Faculty of Natural Sciences, Quy Nhon University, Quy Nhon City, Vietnam
| | - My Phuong Pham-Ho
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam
| | - Elham Tahmasebi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam. and Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Li HS, Wei D, Zhao X, Ren X, Zhang D, Ju W. Thermal Stability of Ag 13- Clusters Studied by Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2020; 124:4325-4332. [PMID: 32390419 DOI: 10.1021/acs.jpca.0c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Identification of the geometric structures of silver clusters is of great importance in future nanotechnologies due to their superior properties. Nevertheless, some ground-state structures are still in academic debate, partly because the experiments and theoretical calculations are not performed at the same temperatures. For example, silver clusters usually have compact configurations. However, a combined experimental and theoretical study proposed that the most stable structure of Ag13- had a two-coordinated atom. By using the CALYPSO approach for the global minima search followed by first-principles calculations, we discovered that a more compact trilayer Ag13- cluster was the ground state, in accordance with another three works published recently. In addition, its O2 adsorption structure is also energetically favored. By tracing characteristic bond changes in ab initio molecular dynamics (MD) simulations, we confirmed that, compared with other isomers, this trilayer structure and its O2 adsorption structure also had the highest thermal stability. This work emphasized the thermal stability concept in theoretical calculations, which may be a necessary supplement to explain the experimental observations on cluster science.
Collapse
Affiliation(s)
- Hai-Sheng Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang City 471023, Henan Province, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, P. R. China
| | - Xingju Zhao
- Department of Physics, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiaoyan Ren
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dawei Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang City 471023, Henan Province, China
| | - Weiwei Ju
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang City 471023, Henan Province, China
| |
Collapse
|
29
|
Cheung LF, Kocheril GS, Czekner J, Wang LS. MnB6–: An Open-Shell Metallaboron Analog of 3d Metallabenzenes. J Phys Chem A 2020; 124:2820-2825. [DOI: 10.1021/acs.jpca.0c00949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ling Fung Cheung
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - G. Stephen Kocheril
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph Czekner
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
30
|
Solvation of lithium ion in helium clusters: Structural properties and relative stabilities. J Mol Graph Model 2020; 98:107582. [PMID: 32200277 DOI: 10.1016/j.jmgm.2020.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/18/2023]
Abstract
Structural study and relative stabilities of Li+-doped helium clusters Li+Hen (n = 1-18) has been reported in this work using two theoretical protocols. The first one is based on the basin-hopping optimization technique, where the total energy of each cluster is described by an additive model describing Li+-He and He-He interactions. The second one is the DFT calculations, in which the initial structures are generated by ABCluster algorithm and CALYPSO software. The CSA shape was found where the first solvation shell is completed at n = 10. The relative stabilities of Li+Hen (n = 1-18) clusters have been discussed based on the variation of the binding energy, second-order difference in energy, fragmentation energy and HOMO-LUMO energy gap as a function of the cluster size. The results showed that Li+He10 is the most stable cluster. The dipole moment is calculated and showed the polar character of the Li+Hen clusters. Finally, the interatomic interactions have been examined topologically by the means of AIM and non-covalent reduced density gradient (NC-RDG) analyses.
Collapse
|
31
|
Wei D, Ren M, Lu C, Bi J, Maroulis G. A quasi-plane IrB18− cluster with high stability. Phys Chem Chem Phys 2020; 22:5942-5948. [DOI: 10.1039/c9cp06330g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A quasi-plane anionic IrB18− cluster with high stability is uncovered by a CALYPSO structural search method.
Collapse
Affiliation(s)
- Donghe Wei
- Department of Physics and Optoelectronic Engineering
- Yangtze University
- Jingzhou 434023
- China
| | - Mengxue Ren
- Department of Physics and Optoelectronic Engineering
- Yangtze University
- Jingzhou 434023
- China
| | - Cheng Lu
- Department of Physics and Optoelectronic Engineering
- Yangtze University
- Jingzhou 434023
- China
- School of Mathematics and Physics
| | - Jie Bi
- School of Mathematics and Physics
- China University of Geosciences (Wuhan)
- Wuhan 430074
- China
| | - George Maroulis
- Department of Chemistry
- University of Patras
- GR-26500 Patras
- Greece
| |
Collapse
|
32
|
Wu X, Sai L, Zhou S, Zhou P, Chen M, Springborg M, Zhao J. Competition between tubular, planar and cage geometries: a complete picture of structural evolution of Bn (n = 31–50) clusters. Phys Chem Chem Phys 2020; 22:12959-12966. [DOI: 10.1039/d0cp01256d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stimulated by the early theoretical prediction of B80 fullerene and the experimental finding of the B40 cage, the structures of medium-sized boron clusters have attracted intensive research interest during the last decade, but a complete picture of their size-dependent structural evolution remains a puzzle.
Collapse
Affiliation(s)
- Xue Wu
- College of Science
- Hohai University
- Changzhou 213022
- China
- Key Laboratory of Materials Modification by Laser
| | - Linwei Sai
- College of Science
- Hohai University
- Changzhou 213022
- China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Dalian University of Technology)
- Ministry of Education
- Dalian 116024
- China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering
- Institute of Frontier and Interdisciplinary Science
- Shandong University
- Qingdao 266235
- China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Dalian University of Technology)
- Ministry of Education
- Dalian 116024
- China
| | - Michael Springborg
- Physical and Theoretical Chemistry
- University of Saarland
- Saarbrücken 66123
- Germany
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Dalian University of Technology)
- Ministry of Education
- Dalian 116024
- China
| |
Collapse
|