Wang L, Zhang B, Yang G, Li W, Wang J, Zhang X, Liang G. Spectral analysis on the acceptor concentration-dependent fluorescence resonance energy transfer process in CuInS
2@ZnS-SQ complexes.
OPTICS EXPRESS 2022;
30:23695-23703. [PMID:
36225044 DOI:
10.1364/oe.460333]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 06/16/2023]
Abstract
Owing to the broad spectral response and flexible choices of donors and acceptors, fluorescence resonance energy transfer (FRET) system based on quantum dots (QDs) is a potential candidate for enhancing performance of solar cells and other optoelectronic devices. Thus it is necessary to develop such FRET systems with high efficiency and understand the involved photophysical dynamics. Here, with type I CuInS2@ZnS core-shell quantum dots as the energy donor, series of CuInS2@ZnS-SQ complexes are synthesized by adjusting the acceptor (squaric acid, SQ) concentration. The FRET dynamics of the samples is systematically investigated by virtue of steady-state emission, time-resolved fluorescence decay, and transient absorption measurements. The experimental results display a positive correlation between the energy transfer efficient (η). The best energy transfer efficient achieved from experimental data is 52%. This work provides better understanding of the photophysical dynamics in similar complexes and facilitates further development of new photoelectronic devices based on relevant FRET systems.
Collapse