• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640408)   Today's Articles (18)   Subscriber (50365)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O2. J Phys Chem A 2024;128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
2
Li C, Hou S, Xie C. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy. J Chem Theory Comput 2023. [PMID: 37216273 DOI: 10.1021/acs.jctc.2c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
3
Lü Y, Zhang C, Wang H, Guo Q, Li Y. An accurate many-body expansion potential energy surface for AlH2 (22A') and quantum dynamics in Al(3P) + H2 (v0 = 0-3, j0 = 0, 2, 4, 6) collisions. Phys Chem Chem Phys 2022;24:16637-16646. [PMID: 35766326 DOI: 10.1039/d2cp01802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
4
Meng F, Li Y, Wang D. Predicting atomic-level reaction mechanisms for SN2 reactions via machine learning. J Chem Phys 2021;155:224111. [PMID: 34911303 DOI: 10.1063/5.0074422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
5
Li C, Hou S, Xie C. Three-dimensional diabatic potential energy surfaces of thiophenol with neural networks. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
6
Bai X, Guo X, Wang L. Machine Learning Approach to Calculate Electronic Couplings between Quasi-diabatic Molecular Orbitals: The Case of DNA. J Phys Chem Lett 2021;12:10457-10464. [PMID: 34672582 DOI: 10.1021/acs.jpclett.1c03053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
7
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021;121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
8
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021. [PMID: 33211478 DOI: 10.1021/acs.chemrev.1020c00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
9
Molecular excited states through a machine learning lens. Nat Rev Chem 2021;5:388-405. [PMID: 37118026 DOI: 10.1038/s41570-021-00278-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
10
Yin Z, Braams BJ, Fu B, Zhang DH. Neural Network Representation of Three-State Quasidiabatic Hamiltonians Based on the Transformation Properties from a Valence Bond Model: Three Singlet States of H3+. J Chem Theory Comput 2021;17:1678-1690. [DOI: 10.1021/acs.jctc.0c01336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Yin Z, Braams BJ, Guan Y, Fu B, Zhang DH. A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H3. Phys Chem Chem Phys 2021;23:1082-1091. [DOI: 10.1039/d0cp05047d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat Commun 2020;11:5713. [PMID: 33177517 PMCID: PMC7658983 DOI: 10.1038/s41467-020-19497-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]  Open
13
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020;121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
14
Westermayr J, Marquetand P. Machine learning and excited-state molecular dynamics. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab9c3e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
15
Hong Y, Yin Z, Guan Y, Zhang Z, Fu B, Zhang DH. Exclusive Neural Network Representation of the Quasi-Diabatic Hamiltonians Including Conical Intersections. J Phys Chem Lett 2020;11:7552-7558. [PMID: 32835486 DOI: 10.1021/acs.jpclett.0c02173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
16
Williams DMG, Eisfeld W. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. J Phys Chem A 2020;124:7608-7621. [DOI: 10.1021/acs.jpca.0c05991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA