Stephanovich VA, Kirichenko EV, Dugaev VK, Sauco JH, Brito BL. Fractional quantum oscillator and disorder in the vibrational spectra.
Sci Rep 2022;
12:12540. [PMID:
35869161 PMCID:
PMC9307824 DOI:
10.1038/s41598-022-16597-2]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
We study the role of disorder in the vibration spectra of molecules and atoms in solids. This disorder may be described phenomenologically by a fractional generalization of ordinary quantum-mechanical oscillator problem. To be specific, this is accomplished by the introduction of a so-called fractional Laplacian (Riesz fractional derivative) to the Scrödinger equation with three-dimensional (3D) quadratic potential. To solve the obtained 3D spectral problem, we pass to the momentum space, where the problem simplifies greatly as fractional Laplacian becomes simply \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k^\mu $$\end{document}kμ, k is a modulus of the momentum vector and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu $$\end{document}μ is Lévy index, characterizing the degree of disorder. In this case, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \rightarrow 0$$\end{document}μ→0 corresponds to the strongest disorder, while \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \rightarrow 2$$\end{document}μ→2 to the weakest so that the case \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu =2$$\end{document}μ=2 corresponds to “ordinary” (i.e. that without fractional derivatives) 3D quantum harmonic oscillator. Combining analytical (variational) and numerical methods, we have shown that in the fractional (disordered) 3D oscillator problem, the famous orbital momentum degeneracy is lifted so that its energy starts to depend on orbital quantum number l. These features can have a strong impact on the physical properties of many solids, ranging from multiferroics to oxide heterostructures, which, in turn, are usable in modern microelectronic devices.
Collapse