1
|
Zhang P, Li J, Huang H, Sui X, Zeng H, Lu H, Wang Y, Jia Y, Steele JA, Ao Y, Roeffaers MBJ, Dai S, Zhang Z, Wang L, Fu X, Long J. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane. J Am Chem Soc 2024; 146:24150-24157. [PMID: 39141782 DOI: 10.1021/jacs.4c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This work introduces a new strategy of a single-atom nest catalyst, whereby several single atoms are positioned closely, aiming to achieve the dual benefits of high atom-utilization efficiency while avoiding the steric hindrance in the coupling reaction. As a proof of concept, Pt single-atom nests, where the adjacent Pt single atoms are approximately 4 Å apart, are precisely engineered on the TiO2 photocatalyst for photocatalytic non-oxidative coupling of methane. The Pt single-atom nest photocatalyst demonstrates remarkable activity, achieving a C2H6 yield and turnover frequency of 251.6 μmol gcat-1 h-1 and 20 h-1, respectively, representing a 3.2-fold improvement compared to the Pt single-atom photocatalyst. Density functional theory calculations reveal that the Pt single-atom nest can significantly decrease the energy barrier for the activation of both CH4 molecules in the coupling process.
Collapse
Affiliation(s)
- Pu Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Junwei Li
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Haowei Huang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiaoyu Sui
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haihua Zeng
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijiao Lu
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ying Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Julian A Steele
- Australian Institute for Bioengineering and Nanotechnology and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xianzhi Fu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
2
|
Vuong VQ, Lee KH, Savara AA, Fung V, Irle S. Toward Quantum Chemical Free Energy Simulations of Platinum Nanoparticles on Titania Support. J Chem Theory Comput 2023; 19:6471-6483. [PMID: 37647252 DOI: 10.1021/acs.jctc.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Platinum nanoparticles (Pt-NPs) supported on titania surfaces are costly but indispensable heterogeneous catalysts because of their highly effective and selective catalytic properties. Therefore, it is vital to understand their physicochemical processes during catalysis to optimize their use and to further develop better catalysts. However, simulating these dynamic processes is challenging due to the need for a reliable quantum chemical method to describe chemical bond breaking and bond formation during the processes but, at the same time, fast enough to sample a large number of configurations required to compute the corresponding free energy surfaces. Density functional theory (DFT) is often used to explore Pt-NPs; nonetheless, it is usually limited to some minimum-energy reaction pathways on static potential energy surfaces because of its high computational cost. We report here a combination of the density functional tight binding (DFTB) method as a fast but reliable approximation to DFT, the steered molecular dynamics (SMD) technique, and the Jarzynski equality to construct free energy surfaces of the temperature-dependent diffusion and growth of platinum particles on a titania surface. In particular, we present the parametrization for Pt-X (X = Pt, Ti, or O) interactions in the framework of the second-order DFTB method, using a previous parametrization for titania as a basis. The optimized parameter set was used to simulate the surface diffusion of a single platinum atom (Pt1) and the growth of Pt6 from Pt5 and Pt1 on the rutile (110) surface at three different temperatures (T = 400, 600, 800 K). The free energy profile was constructed by using over a hundred SMD trajectories for each process. We found that increasing the temperature has a minimal effect on the formation free energy; nevertheless, it significantly reduces the free energy barrier of Pt atom migration on the TiO2 surface and the transition state (TS) of its deposition. In a concluding remark, the methodology opens the pathway to quantum chemical free energy simulations of Pt-NPs' temperature-dependent growth and other transformation processes on the titania support.
Collapse
Affiliation(s)
- Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ka Hung Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aditya A Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
- Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
3
|
Kutorglo EM, Schwarze M, Nguyen AD, Tameu SD, Huseyinova S, Tasbihi M, Görke O, Primbs M, Šoóš M, Schomäcker R. Efficient full solar spectrum-driven photocatalytic hydrogen production on low bandgap TiO 2/conjugated polymer nanostructures. RSC Adv 2023; 13:24038-24052. [PMID: 37577094 PMCID: PMC10414019 DOI: 10.1039/d3ra04049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
The development of photocatalysts that can utilize the entire solar spectrum is crucial to achieving efficient solar energy conversion. The utility of the benchmark photocatalyst, TiO2, is limited only to the UV region due to its large bandgap. Extending the light harvesting properties across the entire spectrum is paramount to enhancing solar photocatalytic performance. In this work, we developed low bandgap TiO2/conjugated polymer nanostructures which exhibit full spectrum activity for efficient H2 production. The highly mesoporous structure of the nanostructures together with the photosensitizing properties of the conjugated polymer enabled efficient solar light activity. The mesoporous TiO2 nanostructures calcined at 550 °C exhibited a defect-free anatase crystalline phase with traces of brookite and high surface area, resulting in the best performance in hydrogen production (5.34 mmol g-1 h-1) under sunlight simulation. This value is higher not only in comparison to other TiO2-based catalysts but also to other semiconductor materials reported in the literature. Thus, this work provides an effective strategy for the construction of full spectrum active nanostructured catalysts for enhanced solar photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Edith Mawunya Kutorglo
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Michael Schwarze
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Anh Dung Nguyen
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Simon Djoko Tameu
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Shahana Huseyinova
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
- University of Santiago de Compostela, Department of Chemistry Avenida do Mestre Mateo 25 Santiago de Compostela 15706 Spain
| | - Minoo Tasbihi
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| | - Oliver Görke
- Department of Ceramic Materials, Faculty III: Process Sciences, Technische Universität Berlin Berlin 10623 Germany
| | - Matthias Primbs
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technische Universität Berlin Berlin 10623 Germany
| | - Miroslav Šoóš
- Bioengineering and Advanced Materials Laboratory, Department of Chemical Engineering, University of Chemistry and Technology Prague Prague 166 28 Czech Republic
| | - Reinhard Schomäcker
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124, TC8 Berlin 10623 Germany
| |
Collapse
|
4
|
Wang Y, Qin S, Denisov N, Kim H, Bad'ura Z, Sarma BB, Schmuki P. Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co-Catalysts in Photocatalytic H 2 Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211814. [PMID: 37256585 DOI: 10.1002/adma.202211814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H2 generation; here SA noble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on "strong electrostatic adsorption" (SEA) of suitable noble metal complexes. In the case of TiO2 - the classic benchmark photocatalyst - SEA calls for adsorption of cationic Pt complexes such as [(NH3 )4 Pt]2+ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H2 PtCl6 ) leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA - and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis.
Collapse
Affiliation(s)
- Yue Wang
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Shanshan Qin
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Hyesung Kim
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
| | - Zdeněk Bad'ura
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Bidyut Bikash Sarma
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Patrik Schmuki
- Department of Materials Science and Engineering, Chair for Surface Science and Corrosion (WW4-LKO), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstraße 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| |
Collapse
|
5
|
Lin X, Ng SF, Ong WJ. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Single-atom catalysts on metal-based supports for solar photoreduction catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chapovetsky A, Kennedy RM, Witzke R, Wegener EC, Dogan F, Patel P, Ferrandon M, Niklas J, Poluektov OG, Rui N, Senanayake SD, Rodriguez JA, Zaluzec NJ, Yu L, Wen J, Johnson C, Jenks CJ, Kropf AJ, Liu C, Delferro M, Kaphan DM. Lithium-Ion Battery Materials as Tunable, “Redox Non-Innocent” Catalyst Supports. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert M. Kennedy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ryan Witzke
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fulya Dogan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Magali Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nestor J. Zaluzec
- Photon Sciences Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Yu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christopher Johnson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cynthia J. Jenks
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A. Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Frei A, Ramu S, Lowe GJ, Dinh H, Semenec L, Elliott AG, Zuegg J, Deckers A, Jung N, Bräse S, Cain AK, Blaskovich MAT. Platinum Cyclooctadiene Complexes with Activity against Gram-positive Bacteria. ChemMedChem 2021; 16:3165-3171. [PMID: 34018686 PMCID: PMC8596843 DOI: 10.1002/cmdc.202100157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is a looming health crisis, and it is becoming increasingly clear that organic chemistry alone is not sufficient to continue to provide the world with novel and effective antibiotics. Recently there has been an increased number of reports describing promising antimicrobial properties of metal-containing compounds. Platinum complexes are well known in the field of inorganic medicinal chemistry for their tremendous success as anticancer agents. Here we report on the promising antibacterial properties of platinum cyclooctadiene (COD) complexes. Amongst the 15 compounds studied, the simplest compounds Pt(COD)X2 (X=Cl, I, Pt1 and Pt2) showed excellent activity against a panel of Gram-positive bacteria including vancomycin and methicillin resistant Staphylococcus aureus. Additionally, the lead compounds show no toxicity against mammalian cells or haemolytic properties at the highest tested concentrations, indicating that the observed activity is specific against bacteria. Finally, these compounds showed no toxicity against Galleria mellonella at the highest measured concentrations. However, preliminary efficacy studies in the same animal model found no decrease in bacterial load upon treatment with Pt1 and Pt2. Serum exchange studies suggest that these compounds exhibit high serum binding which reduces their bioavailability in vivo, mandating alternative administration routes such as e. g. topical application.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Soumya Ramu
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Gabrielle J. Lowe
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Alysha G. Elliott
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Johannes Zuegg
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| | - Anke Deckers
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Nicole Jung
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic BiologyDepartment of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mark A. T. Blaskovich
- Centre for Superbug SolutionsInstitute for Molecular BioscienceThe University of QueenslandSt. LuciaQLD 4072Australia
| |
Collapse
|
9
|
Photocatalytic production of H2 is a multi-criteria optimization problem: Case study of RuS2/TiO2. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts 2021. [DOI: 10.3390/catal11101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalysis delivers a promising pathway toward the clean and sustainable energy supply of the future. However, the inefficiency of photon absorption, rapid recombination of photogenerated electron-hole pairs, and especially the limited active sites for catalytic reactions result in unsatisfactory performances of the photocatalytic materials. Single-atom photocatalysts (SAPCs), in which metal atoms are individually isolated and stably anchored on support materials, allow for maximum atom utilization and possess distinct photocatalytic properties due to the unique geometric and electronic features of the unsaturated catalytic sites. Very recently, constructing SAPCs has emerged as a new avenue for promoting the efficiency of sustainable production of fuels and chemicals via photocatalysis. In this review, we summarize the recent development of SAPCs as a new frontier for cocatalyst/photocatalyst composites in photocatalytic water splitting. This begins with an introduction on the typical structures of SAPCs, followed by a detailed discussion on the synthetic strategies that are applicable to SAPCs. Thereafter, the promising applications of SAPCs to boost photocatalytic water splitting are outlined. Finally, the challenges and prospects for the future development of SAPCs are summarized.
Collapse
|
11
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Chutirat J, Eaimsumang S, Luengnaruemitchai A. Influence of nitric acid-assisted hydrothermal conditions on the characteristics of TiO2 catalysts and their activity in the oxidative steam reforming of methanol. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Vasilchenko D, Topchiyan P, Tsygankova A, Asanova T, Kolesov B, Bukhtiyarov A, Kurenkova A, Kozlova E. Photoinduced Deposition of Platinum from (Bu 4N) 2[Pt(NO 3) 6] for a Low Pt-Loading Pt/TiO 2 Hydrogen Photogeneration Catalyst. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48631-48641. [PMID: 33064000 DOI: 10.1021/acsami.0c14361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An efficient method for the deposition of ionic platinum species PtOx onto a TiO2 surface was developed on the basis of light-induced activation of the [Pt(NO3)6]2- anion. The deposited PtOx species with an effective Pt oxidation state between +4 and +2 have an oxygen-made environment and include single ion centers {PtOn} and polyatomic ensembles {PtnOm} connected to a TiO2 surface with Pt-O-Ti bonds. The resulting PtOx/TiO2 materials were tested as photocatalysts for the hydrogen evolution reaction (HER) from a water ethanol mixture and have shown uniquely high activity with the rate of H2 evolution achieving 11 mol h-1 per gram of Pt, which is the highest result for such materials reported to date. A combination of spectral methods shows that, under HER conditions, reduction of the supported PtOx species leads to the formation of well-dispersed nanoparticles of metallic platinum attached on the surface of TiO2 by Ti-O-Pt bonds. The high activity of the PtOx/TiO2 materials is believed to result from a combination of uniform distribution of small platinum nanoparticles over the titania surface and their close interaction with TiO2.
Collapse
Affiliation(s)
- Danila Vasilchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russian Federation
| | - Polina Topchiyan
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Alphiya Tsygankova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russian Federation
| | - Tatyana Asanova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russian Federation
| | - Boris Kolesov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russian Federation
| | - Andrey Bukhtiyarov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Anna Kurenkova
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Ekaterina Kozlova
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Piccolo L, Afanasiev P, Morfin F, Len T, Dessal C, Rousset JL, Aouine M, Bourgain F, Aguilar-Tapia A, Proux O, Chen Y, Soler L, Llorca J. Operando X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO2 Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03464] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L. Piccolo
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - P. Afanasiev
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - F. Morfin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - T. Len
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - C. Dessal
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - J. L. Rousset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - M. Aouine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - F. Bourgain
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - A. Aguilar-Tapia
- Université Grenoble Alpes, CNRS, Institut Néel, F-38000 Grenoble, France
| | - O. Proux
- Université Grenoble Alpes, CNRS, OSUG, F-38041 Grenoble, France
| | - Y. Chen
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 16, 08019 Barcelona, Spain
| | - L. Soler
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 16, 08019 Barcelona, Spain
| | - J. Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 16, 08019 Barcelona, Spain
| |
Collapse
|
15
|
Witzke RJ, Chapovetsky A, Conley MP, Kaphan DM, Delferro M. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03350] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Witzke
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Li C, Chen Z, Yi H, Cao Y, Du L, Hu Y, Kong F, Kramer Campen R, Gao Y, Du C, Yin G, Zhang IY, Tong Y. Polyvinylpyrrolidone-Coordinated Single-Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:15902-15907. [PMID: 32436325 PMCID: PMC7539980 DOI: 10.1002/anie.202005282] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Indexed: 11/17/2022]
Abstract
The essence of developing a Pt-based single-atom catalyst (SAC) for hydrogen evolution reaction (HER) is the preparation of well-defined and stable single Pt sites with desired electrocatalytic efficacy. Herein, we report a facile approach to generate uniformly dispersed Pt sites with outstanding HER performance via a photochemical reduction method using polyvinylpyrrolidone (PVP) molecules as the key additive to significantly simplify the synthesis and enhance the catalytic performance. The as-prepared catalyst displays remarkable kinetic activities (20 times higher current density than the commercially available Pt/C) with excellent stability (76.3 % of its initial activity after 5000 cycles) for HER. EXAFS measurements and DFT calculations demonstrate a synergetic effect, where the PVP ligands and the support together modulate the electronic structure of the Pt atoms, which optimize the hydrogen adsorption energy, resulting in a considerably improved HER activity.
Collapse
Affiliation(s)
- Can Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Zheng Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsCollaborative Innovation Center of Chemistry for Energy MaterialsMOE Laboratory for Computational Physical ScienceDepartment of ChemistryFudan University200433ShanghaiChina
| | - Hong Yi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yi Cao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Lei Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Yidong Hu
- Department of ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)University of Science and Technology of ChinaHefei230026China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Richard Kramer Campen
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
- Faculty of PhysicsUniversity of Duisburg-EssenLotharstraße 147057DuisburgGermany
| | - Yunzhi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageHarbin Institute of TechnologyHarbin150001China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsCollaborative Innovation Center of Chemistry for Energy MaterialsMOE Laboratory for Computational Physical ScienceDepartment of ChemistryFudan University200433ShanghaiChina
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
- Faculty of PhysicsUniversity of Duisburg-EssenLotharstraße 147057DuisburgGermany
| |
Collapse
|
17
|
Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020. [DOI: 10.3390/catal10070804] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A high-efficiency method to deal with pollutants must be found because environmental problems are becoming more serious. Photocatalytic oxidation technology as the environmentally-friendly treatment method can completely oxidate organic pollutants into pollution-free small-molecule inorganic substances without causing secondary pollution. As a widely used photocatalyst, titanium dioxide (TiO2) can greatly improve the degradation efficiency of pollutants, but several problems are noted in its practical application. TiO2 modified by different materials has received extensive attention in the field of photocatalysis because of its excellent physical and chemical properties compared with pure TiO2. In this review, we discuss the use of different materials for TiO2 modification, highlighting recent developments in the synthesis and application of TiO2 composites using different materials. Materials discussed in the article can be divided into nonmetallic and metallic. Mechanisms of how to improve catalytic performance of TiO2 after modification are discussed, and the future development of modified TiO2 is prospected.
Collapse
|
18
|
Lardhi S, Cavallo L, Harb M. Significant Impact of Exposed Facets on the BiVO 4 Material Performance for Photocatalytic Water Splitting Reactions. J Phys Chem Lett 2020; 11:5497-5503. [PMID: 32586096 PMCID: PMC7467742 DOI: 10.1021/acs.jpclett.0c01234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The impact of the four predominant (010), (110), (001), and (121) exposed facets obtained experimentally for monoclinic BiVO4 on its photocatalytic performance for water splitting reactions is investigated on the basis of the hybrid density functional theory including the spin-orbit coupling. Although their electronic structure is similar, their transport and redox properties reveal anisotropic characters based on the crystal orientation and termination. The particular role of each facet in proton reduction was correlated with the surface Bi coordination number and their geometrical distribution. Our work predicts the (001) facet as the only good candidate for both HER and OER, while the (010) facet is a fitting candidate for OER only. The (110) and (121) surfaces are acceptable candidates only for OER but less potential than (001) and (010). These outcomes will efficiently conduct experimentalists for an attentive design of facet-oriented BiVO4 samples toward improving water oxidation and proton reduction.
Collapse
|
19
|
Li C, Chen Z, Yi H, Cao Y, Du L, Hu Y, Kong F, Kramer Campen R, Gao Y, Du C, Yin G, Zhang IY, Tong Y. Polyvinylpyrrolidone‐Coordinated Single‐Site Platinum Catalyst Exhibits High Activity for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Can Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | - Zheng Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Department of Chemistry Fudan University 200433 Shanghai China
| | - Hong Yi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yi Cao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Lei Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Yidong Hu
- Department of Chemistry Hefei National Laboratory for Physical Sciences at the Microscale iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei 230026 China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Richard Kramer Campen
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
- Faculty of Physics University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| | - Yunzhi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Department of Chemistry Fudan University 200433 Shanghai China
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
- Faculty of Physics University of Duisburg-Essen Lotharstraße 1 47057 Duisburg Germany
| |
Collapse
|
20
|
Chapovetsky A, Langeslay RR, Celik G, Perras FA, Pruski M, Ferrandon MS, Wegener EC, Kim H, Dogan F, Wen J, Khetrapal N, Sharma P, White J, Kropf AJ, Sattelberger AP, Kaphan DM, Delferro M. Activation of Low-Valent, Multiply M–M Bonded Group VI Dimers toward Catalytic Olefin Metathesis via Surface Organometallic Chemistry. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ryan R. Langeslay
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gokhan Celik
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S. Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hacksung Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Center for Catalysis and Surface Science and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Fulya Dogan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Navneet Khetrapal
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob White
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - A. Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alfred P. Sattelberger
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|